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ABSTRACT 

In this article, a Susceptible – Vaccinated – Infected – Recovered (SVIR) model is formulated 
and analysed using comprehensive mathematical techniques. The vaccination class is primarily 
considered as means of controlling the disease spread. The basic reproduction number (Ro) of 
the model is obtained, where it was shown that if Ro<1, at the model equilibrium solutions 
when infection is present and absent, the infection- free equilibrium is both locally and globally 
asymptotically stable. Also, if Ro>1, the endemic equilibrium solution is locally asymptotically 
stable. Furthermore, the analytical solution of the model was carried out using the Differential 
Transform Method (DTM) and Runge - Kutta fourth-order method. Numerical simulations were 
carried out to validate the theoretical results.  
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1. Introduction 

The classical susceptible – infectious – recovered (SIR) model originated from the seminar 
papers of Ross (1911) and one of the earliest fundamental contributions which provide basic 
framework for almost all later epidemic model was carried out by Kermack and Mckendrick, 
(1927). One of the modifications to SIR models is the introduction of vaccination compartment 
to study more complex disease and infection mechanism. The World Health Organization 
WHO (2018), reported that licensed vaccines are currently available to prevent or contribute to 
the prevention and control of twenty-five infections. Several mathematical models describing 
the transmission of disease and controls have been formulated. Wang et al., (2017), considered 
a global threshold dynamic of an SVIR epidemic model with age dependent infection and 
relapse. Li (1999); Fan (2001) and Sun (2010), studied the global dynamics of SEIR models 
with varying population size and vaccination respectively. Klouach and Boulasair (2018), 
worked on the stochastic SVIR epidemic model with imperfect vaccine, also, a new epidemic 
model with indirect transmission was analytically discussed by Brauer (2017).  

Moreover, Yang et al., (2010) discussed the global analysis for a general 
epidemiological model with vaccination and varying populations, while Liu et al., (2015) 
worked on the global stability with age dependent latency with relapse. Gani and Shreedevi 
(2017), applied optimal control strategies to a SIVR epidemic model. (El-Koufi et al., 2019), 
considered the analysis of a stochastic SIR model with vaccination and nonlinear incidence 
rate. Also, (Ogunmiloro et al ., 2018), worked on the stability analysis and optimal control of 
vaccination and treatment of a SIR epidemiological deterministic model with relapse, while the 
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work of  (Sudhipa et al., 2014), on stability analysis of SIR model with vaccination and Cui 
and Zhang (2014) on global discrete SIR epidemic model with vaccination proved effective to 
this study.  (Zhou, 1986) used DTM to solve linear and nonlinear initial value problems in 
electric circuit analysis and it has since be applied as a powerful to numerical tool to solve 
epidemic models, see (Idowu et al., 2018) and (Ahmad et al., 2017). All the articles cited have 
proved very useful to this study. Having gone through the articles cited, we formulated a SIVR 
epidemic model with standard incidence rate with some important parameters incorporated into 
the model. The model is analyzed and solved using qualitative and quantitative mathematical 
theorems and methods. Section 2 deals with the mathematical model formulation, analysis of 
the invariant region and positivity of the solutions. Section 3 involves, obtaining the equilibrium 
solutions at infection-free and infection-present states. Also, the reproduction number of model 
is obtained. Section 4 involves the local and global stability analysis of the model. Section 5 
deals with the analytical solution of the model using the DTM and Runge – Kutta fourth order 
method.   

2. Mathematical Model Formulation 

The total human host population is subdivided into the population of susceptible individuals 
𝑆(𝑡); infected individuals 𝐼(𝑡); vaccinated individuals 𝑉(𝑡); recovered individuals 𝑅(𝑡). The 
following parameters were incorporated into the model formulation as follows: 

The susceptible host sub-population is increased by recruitment rate of susceptible individuals 
denoted  𝐴, while 𝛽 is the transmission rate of infections between the susceptible and the 
infected individuals which leads to a reduction in the susceptible sub-population. Also, the 
susceptible sub-population is further reduced by the notation 𝜌 which denotes the fraction of 
susceptible individual who are vaccinated and the term (1 − 𝜌) which refers to the fraction of 
susceptible individuals that are not vaccinated and 𝛿/ denotes the rate at which vaccination 
wanes in vaccinated individuals’ overtime.  𝜇 represents the natural death rate applicable to all 
sub-population of individuals in the total host population. In the sub-population of infected 
individuals, 𝛼 denotes the disease induced death rate and 𝛾 represents the recovery rate of 
infected individuals. The assumptions guiding the model build up are that, there is permanent 
recovery, there is birth rate and the natural death rate is applicable to all sub-populations of 
individuals in the total human host population and vaccinations received by fractions of 
susceptible individuals wane overtime. The mathematical model derived after the incorporation 
of the assumptions, variables and parameters is given by 

34
35
= 𝐴 − 𝛽𝑆𝐼 − [𝜌 + (1 − 𝜌)]𝑆 − 𝜇𝑆 + 𝛿/𝑉,  

3;
35
= 𝛽𝑆𝐼 − (𝜇 + 𝛼 + 𝛾)𝐼,  

3<
35
= 𝜌𝑆 − 𝜇𝑉 − 𝛿/𝑉,  

3=
35
= 𝛾𝐼 − 𝜇𝑅.                             (1)  
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	Subject to the initial conditions 𝑆(0) = 𝑆A, 𝐼(0) = 𝐼A, 𝑉(0) = 	𝑉A, 𝑅(0) = 𝑅A. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1     Invariant Region 

The positively invariant region is shown to be bounded by adding up the total human host 
population 𝑁(𝑡)  such that   

3C
35
= 34

35
+ 3;

35
+ 3<

35
+ 3=

35
.                 (2)                                                                                      

Addition of the model system equations in (2) yields  

3C
35
= 𝐴 − (1 − 𝜌)𝑆 − 𝛼𝐼 − 𝜇𝑁(𝑡)                                                      (3) 

In the absence of disease induced death rate i.e., 𝛼 = 0, since the total human host 
population is constant, for convenience we assume that 𝑁 = 𝑆 + 𝐼 + 𝑉 + 𝑅 = 1 and 𝑆 = 𝑁 −
𝐼 − 𝑉 − 𝑅 = 1. Therefore (3) yields 

3C
35
= 𝐴 − (1 − 𝜌) − 𝜇𝑁(𝑡)                                                                                        (4)                                                                                                           

 
so that 

3C
35
≤ 𝐴 − (1 − 𝜌) − 𝜇𝑁(𝑡).                                                                                      (5) 

 
Moreover, 
 
∫ 3C

FG(/GH)GIC(5)
≤ ∫ 𝑑𝑡.                                                                                             (6) 

 
so that 

ln	(𝐴 − (1 − 𝜌) − 𝜇𝑁(𝑡))≥ 𝑡 + 𝐶/.                                                                          (7)                                                                                  

𝜇𝑆	

A 

𝜇𝑉	

V	

𝛾𝐼	

𝛽𝑆𝐼	

𝜇𝑅	

R	

I	
(𝜇 + 𝛼)𝐼	

𝜌𝑆	

S	

𝛿/ 

Figure. 1. Flow diagram of the model 
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and 
 
𝐴 − (1 − 𝜌) − 𝜇𝑁(𝑡) ≥ 𝑒GI5𝑒PQ                                                                            (8) 

so that as 𝑡 = 0, and 𝑁(0) = 	𝑁A in (8) becomes 

   𝐴 − (1 − 𝜌) − 𝜇𝑁(𝑡) ≥ 𝑒PQ                                                                                     (9)                                                                                                                                                                         

Substituting (9) into (8) yields 

 𝐴 − (1 − 𝜌) − 𝜇𝑁(𝑡) ≥ (𝐴 − (1 − 𝜌) − 𝜇𝑁A)𝑒GI5                                              (10) 

And  

𝐴 − 𝜇𝑁(𝑡) ≥ 𝐴 − (1 − 𝜌) − [𝐴 − (1 − 𝜌) − 𝜇𝑁A]𝑒GI5.	                                       (11)                                                                             

Since 𝑁(0) = 	𝑁A	𝑎𝑛𝑑	𝐴 is a constant, after simple re-arrangement and 
simplification, yields  

𝑁(𝑡) ≤ FG(/GH)
I

− TFG(/GH)GICU
I

V 𝑒GI5.                                                                   (12)                                                                         

As 𝑡 → ∞  in (12), the population 𝑁(𝑡) → FG(/GH)
I

 implies that, 0 ≤ 𝑁(𝑡) ≤ FG(/GH)
I

. Thus, 
the feasible solution set of the model system equations enters and remain in the region    

Ω = Z(𝑆, 𝐼, 𝑉, 𝑅) ∈ ℝ]^ :𝑁 ≤ FG(/GH)
I

`.                                                                    (13)       

The basic model is reasonable in an epidemic sense and mathematically well posed.     

 
2.2     Positivity of the Model Solutions 

Let Ω = {(𝑆, 𝐼, 𝑉, 𝑅) ∈ ℝ]^ : 𝑆A > 0, 𝐼A > 0, 𝑉A > 0, 𝑅A > 0), then the solutions of {𝑆, 𝐼, 𝑉, 𝑅} 
are positive for time 𝑡 ≥ 0.  

 
Taking the first equation in the model system equations (1) 
 
34
35
= 𝐴 − (𝛽𝐼 + [𝜌 + (1 − 𝜌)] + 𝜇)𝑆                                                                             (14) 

 
 
Integrating both sides of (14) yields 
 
𝑙𝑛𝑆(𝑡) ≥ −(𝛽𝐼 + [𝜌 + (1 − 𝜌)] + 𝜇)𝑡 + 𝑐,                                                                  (15) 
 
where 
  
𝑆(𝑡) ≥ 𝑒P𝑒G(f;][H](/GH)]]I)5 ≥ 0                                                                                 (16) 
 
and 
 
𝑆(𝑡) ≥ 𝑆A𝑒G(f;][H](/GH)]]I)5 ≥ 0.                                                                                (17) 
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From the initial condition that 𝑆(0) = 𝑆A, (17) is positive. Applying the same procedure 
to the remaining state equations, the following are obtained as 
 
𝐼(𝑡) ≥ 𝐼A𝑒G(f4]I]g]h)35 ≥ 0 ,                                                                                     (18) 
 
𝑉(𝑡) ≥ 𝑉A𝑒GI5 ≥ 0 ,                                                                                                      (19) 
    
𝑅(𝑡) ≥ 𝑅A𝑒GI5 ≥ 0.                                                                                                      (20) 
 
Hence, the model solutions of (17), (18), (19), (20) are positive at time 𝑡 ≥ 0.  

 

3. Equilibrium Solutions and Reproduction Number (𝑹𝒐) 

3.1     Equilibrium Solutions 

The equilibrium solutions of the model system is obtained at the time-independent solutions, 
when infection is free and absent in the human host population. The infection-free equilibrium 
solutions are given by 

 
𝐸A = (𝑆, 𝐼, 𝑉, 𝑅) = 	 l	 F

[H](/GH)GI]
, 0	, HF

(I]mQ[H](/GH)GI])
	 , 0n                                  (21) 

.                                                                                              
 
Also, the endemic equilibrium solutions which occurs when infection persist in the human host 
population are given by 

 
𝐸∗ = (𝑆∗, 𝐼∗, 𝑉∗, 𝑅∗)                                                                                                (22) 
 
where 

 
𝑆∗ = <∗mQF

f;]I]/
, 𝐼∗ = f4∗

I]g]h
, 

 
	𝑉∗ = ( H

I]mQ
)( <

∗mQF
f;]I]/

), 𝑅∗ = h
I

f4∗

I]g]h
.                                                                    (23)                                            

 

3.2     Reproduction Number (𝑹𝒐) 

The reproduction number is the average number of secondary infections produced per unit time 
when a single infectious individual is introduced into the population of susceptible during his 
or her lifetime of infections. If 𝑅A < 1, infection dies out of the human host population. If  𝑅A >
1, then infection becomes endemic which necessitates some forms of control measures to curtail 
the disease spread. To obtain the 𝑅A of this model system, we define 𝑋r =
{𝑋 = 0|𝑋t, 𝑖 = 1, 2, 3… . 𝑛}, such that new infections are distinguished from other changes in 
the populations. Then, 𝐹t(𝑥) is the rate of new manifestations of clinical symptoms in 
compartment 𝑖. Also, let 𝑉t] be the rate at which individuals transfer out of compartment. Then 
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𝑥t = 𝐹t(𝑥) − 𝑉t(𝑥), 𝑖 = 1, 2, 3…. and 𝑉t(𝑥) = 𝑉tG − 𝑉t]. F is a non-negative matrix and 𝑉 is a 
non-singular matrix. Therefore; 
  

V] = |

A + δ/V
0
ρS
γI

�, VG = |

[ρ + (1 − ρ)]S − µS
−(µ + α + γ)	I
−(µ + δ/)V

−µR

�               (24) 

 
and 
 

V = VG − V]	= |

A + δ/V − [ρ + (1 − ρ)]S − µS
(µ + α + γ)	I
𝜌𝑆 + (𝜇 + 𝛿/)𝑉

γI + µR

�.                                        (25)

   
Also, 
  

F =

⎣
⎢
⎢
⎢
⎡
0																				0																				0																				0	
0											β l �

[�](/G�)]�]
n 							0																		0

0																				0																					0																					0
0																				γ																					0																					0⎦

⎥
⎥
⎥
⎤
                (26) 

 
And  
 

V = |

m/														0														0												0
0												m�														0												0
ρ											0															m�											0
0													γ															0												µ

�  

 
where  𝑚/ = [ρ + (1 − 𝜌) − 𝜇)],𝑚� = (𝜇 + 𝛼 + 𝛾),𝑚� = (𝜇 + 𝛿/).  Therefore, the 
largest eigenvalue  of   F. VG/ = R�,  where 

 
R� = 	 T

��
(�]�)(�]�]�)

V.                                (27)
  

Is the basic reproduction number of the model system equations (1). 
 

3.3     Local Stability of The Infection - Free Equilibrium 
 
Theorem: The Infection-free equilibrium is locally asymptotically stable if R� < 1	. 
 
Proof: The Jacobian matrix J of the model system (1) at the disease free equilibrium yields 
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J =

⎣
⎢
⎢
⎢
⎢
⎡−(ρ + (1 − ρ) − µ) − λ																																	 − β	

F
[H](/GH)GI]

																																					δ/																															0	

0																																										 �β l F
[H](/GH)GI]

	n − (𝜇 + 𝛼 + 𝛾)� − λ																								0																																						0

ρ																																																														0																																																			 − (µ + δ/) − λ																																		0
0																																																															Υ																																																																		0																																 − µ − λ⎦

⎥
⎥
⎥
⎥
⎤

								

                                                                                                  
  (28) 

 
  
The characteristics polynomial of (28) yields 

 
�G(I]H] )]�GI¡](HGgGhG )¢I](GgGhG )H]fF¢(I] )¡(/G=U)

H]I
.                                      (29) 

 
The trace and determinant of (28) are respectively given by 
 
 −𝜌 − 4𝜇 + fF

H]I
− 𝛼 − 𝛾 < 0                                                                                   (30) 

 
and 
 
(GHGI)I¡�FfGgIGgHGhIGhHGI¡GI¤¢

H]I
> 0.                                                                   (31) 

 
In (28), all the real parts are negative except  
 
β l F

[H](/GH)GI]
n − (𝜇 + 𝛼 + 𝛾)                                                                                 (32) 

 
which implies that, for 𝑅A to be less than unity, 
 
β l F

[H](/GH)GI]
n − (𝜇 + 𝛼 + 𝛾) > (I]g]h)

(I]g]h)
.	                                                              (33) 

 
so that 
 
𝑅A − 1 > 0,−𝑅A > −1, 𝑅A < 1 .                                                                            (34) 
 
Hence, since 𝑅A < 1,	 the infection-free equilibrium is locally asymptotically stable.   

 

3.4     Global Stability of The Infection-Free Equilibrium 
 
Theorem: The infection-free equilibrium is locally asymptotically stable if and only  
if R� < 1	. 

  
Proof: Given that R� < 1, there exists only the infection free equilibrium 𝐸A. Consider a  
Lyapunov function candidate of the form 𝑉(𝑆, 𝐼, 𝑉): 𝑅� → 𝑅] defined as   
 

𝑉(𝑆, 𝐼, 𝑉) = 𝜓𝐼, 𝜓 > 0                                                                                            (35)                
 
  



 

Ogunmiloro et.al., Malaysian Journal of Computing, 4(2): 349-361, 2019  

356 

 

Substituting the second equation in (1) into (35) yields 

�̇� = 𝜓[(𝛽𝑆 − 𝜇 + 𝛼 + 𝛾)𝐼]                                                                                    (36) 
 

Since 𝐸A = 𝑆 = F
[H](/GH)GI]

,  let 𝜓 = /
(I]g]h)

  so that, In the absence of disease i.e., I 
= 0,  
 
 
�̇� = 𝜓(fFG(H]I)(I]g]h)

H]I
)𝐼                                                                                     (37) 

 
�̇� = [𝑅A − 1]𝐼 ≤ 0                                                                                                (38) 
 

�̇� ≤ 0 for 𝑅A < 1 and �̇�= 0 if and only if I = 0. Hence, the infection-free equilibrium is 
globally asymptotically stable. 
 
 
4. Numerical Solution of The SIVR Model (1)  
 
In this section, the numerical solution of the model system (1) is obtained by solving it by using 
the Runge - Kutta 4th order and Differential Transform Method (DTM). This idea was first 
introduced by Zhou (1986) for solving linear and nonlinear initial value problems in electrical 
circuit analysis. The method had since been applied to solve a variety of problems that are 
modelled with differential equations. The concept of differential transformation is derived from 
the Taylor series expansion. In this method, given system of differential equations and related 
initial conditions are transformed into a system of recurrence equations that finally leads to a 
system of algebraic equations whose solutions are the coefficients of a power series solution. 
Taylor series polynomial of a degree n is defined as 
 

𝑃 (𝑥) =© /
ª!
�𝑓ª(𝑐)(𝑥 − 𝑐)ª¢

¨

ª�
 = 0.                           (39) 

 
Suppose that the function 𝑓 has (𝑛 + 1) derivatives on the interval (𝑐 − 𝑟, 𝑐 + 𝑟), for some  𝑟 >
0 and lim

¨→°
𝑅¨(𝑥) is the error between 𝑝¨(𝑥) and the approximated function 𝑓(𝑥) then the 

Taylor series expanded about x = c converges to f(x) that is; 
 

 

𝑓(𝑥) =© /
ª!
�𝑓ª(𝑐)(𝑥 − 𝑐)ª¢

¨

ª�
 = 0. For all x ∈ (c – r, c + r).                           (40) 

 
Definition 1: Ahmed et al., (2017), Idowu et al., (2018).  The differential transformation of the 
function 𝑓(𝑥) for the 𝑘5³ derivative is defined as 

 
	𝑓(𝑥) = 	 /

ª!
T´

µ	¶(·)
´·µ

V		
¸¸U

                             (41) 

where 𝑓(𝑥) is the original function and 𝐹(𝑘) is the transformed function. 
 
Definition 2: (Ahmad et al., 2017), (Idowu et al., 2018). The inverse differential transformation 
F(k) is given by 
 

𝑓(𝑥) = ¹ (x − x»)¼	𝐹(𝑘)
°
ª� .                    (42) 
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Substituting (41) and (42), yields 
  

𝑓(𝑥) =© (x − x»)¼ 	
1

𝑘!
Td
k	f(x)
dxk

V		𝑥=𝑥𝑜	
°

ª�
.                                                                  (43) 

 
 
Equation (43) is the Taylor’s series of 𝑓(𝑥)	at	x = x».  The fundamental operations can be 
deduced from (41), (42), (43) as listed below. See (Ahmed et al., 2017). 
 

1.  𝑓(𝑥) = 𝑔(𝑥)	± ℎ(𝑥), then F(k) = G(k) ± H(k)    
2. If 𝑓(𝑥)	= c g(x), then F(k) = c G(k), where c is a constant 
3. If 𝑓(𝑥) = 	 3Å(¸)

3¸
, then F(k) = (k +1)G(k +1) 

4. If 𝑓(𝑥) = 	 3ᵐÅ(¸)
3¸ᵐ

, then Y (k) = (k +1)(k + 2).......(k + m)G(k + m). 
5. If 𝑓(𝑥) = 1, then F(k) = 𝛿(k).  
6. If 𝑓(𝑥) =  𝑥, then F(k) = 𝛿(k-1). 
7. If 𝑓(𝑥) =  𝑥ᵐ, then F(k) = 𝛿(k-m)  =      1, if k = m 

    0, if  k ≠ m. 
8. If f (x) = g(x) h(x), then 𝐹(𝑥) = ∑ 𝐻(𝑚)𝐺(𝑘 −𝑚)ª

Ê�  
9. If (𝑥) = 𝑒Ê¸, 𝑡ℎ𝑒𝑛	𝐹(𝑘) = Êᵏ

ª!
. 

10. If  𝑓(𝑥) = (1 + 𝑥)ᵐ, 𝑡ℎ𝑒𝑛	𝐹(𝑘) = Ê(ÊG/)(ÊG�)……(ÊGª]/)
ª!

              (44) 
 
Now, we consider the SIVR Model given by equation (1) with the initial conditions and 
parameter values as: S(0) = 50, I(0) = 10, V(0) = 20, R(0) = 30 and parameter value 𝛽 =
0.05, 𝐴 = 0.0123, 𝜌 = 0.24, µ = 0.112, 𝛼 = 0.3, 𝛾 = 0.312, 𝛿/ = 0.011. 
 
Let S(k), I(k), V(k) and R(k) denote the differential transformation of S(t), I(t), V(t) and R(t) 
respectively, then by using the fundamental operations of differential transformation method. 
We obtained the following recurrence relation to each equation of the model system (1)  
 

S(k + 1) = /
¼]/

[A − [𝜌 + (1 − 𝜌) − 𝜇]S(k) − β∑ S(m)I(k − m)]ª
Ê� + δ/V(k), (45) 

I(k + 1) = /
¼]/

[−(−(µ + α + γ)I(k) + β∑ S(m)I(k − m)]ª
Ê� ,    (46) 

V(k + 1) = /
¼]/

[γI(k) − (µ + δ/)V(k)] ,                   (47) 

R(k + 1) = /
¼]/

[γI(k) − µR(k)].                              (48) 
 
 
Applying the values of parameters and initial conditions, the closed form solution, when k=7 
are given by the following as; 

S(t) = ∑ t¼S(k) = 50 − 42.5877t	 − 227.6369148t� 	− 819.889052t�	ª
Ê� −

					184.2728757t^ + 	16044.28588tÑ + 	99195.61185tÒ + 232603.6549tÓ,         
        (49) 

 
I(t) 	= ∑ t¼I(k) = 10 + 17.76t	 − 197.16762t� 	− 1127.632131t�						ª

Ê�   
−1461.870336t^ + 	14781.11872tÑ + 	111163.5841tÒ + 		309595.0066tÓ,  

                  (50) 
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V(t) 	= ∑ t¼V(k) = 20 − 37.74t + 13.0051935t� + 53.38854263t�	ª

Ê�   
														+36.00885688t^ + 	25.36091675tÑ − 1899.04723tÒ − 10030.88445tÓ,        

       (51) 
  

R(t) 	= ∑ t¼R(k) = 30 − 0.24t + 2.784t� − 20.60936848t�	ª
Ê�   

													−87.37824368t^ − 89.2634363tÑ + 770.2844243tÒ + 4942.395198tÓ.            
    (52) 

 
 
4.1 Numerical Results and Graphical Illustrations  
 
In this section, the numerical results of the model system are presented in Tables 1 and 2, 
obtained from the numerical solutions of the model using Runge - Kutta 4th order and 
Differential Transform Method (DTM). The results compared favourably with each other and 
the plots are shown below:  
 
 

Table 1. Numerical results of the model system equations using DTM 

Time(t) S(t) I(t) V(t) R(t) 
0  50 10 20 30 
0.2  41.28304317 10.11248907 13.2151140 30.01609462 
0.4  32.78142716 17.24039028 11.6298719 30.11609462 
0.6  24.14789101 20.81490719 7.40975069 30.29230922 
0.8  15.06439541 28.01207890 2.55292702 30.74353763 
1.0  11.01690514 29.29564134 1.47181908 30.07705655 

 

Table 2. Numerical results of the model system equations using Runge-Kutta method 

Time(t) S(t) I(t) V(t) R(t) 
0  50 10 20 30 
0.2  41.40762143 13.66517011 15.8642119 30.66536487 
0.4  32.81524285 17.33034021 11.72924238 30.13072974 
0.6  24.2286428 20.99551032 7.59386357 30.19609462 
0.8  15.63048571 24.66068043 2.45848476 30.26145949 
1.0  11.03810713 29.03810713 1.57689405 30.32682435 

 
 
The results are further described in Figures 1,2,3 and 4. Figure 1 describes the behaviour of 
susceptible subpopulation with time. As time increases, the gradual decline depicts that there is 
a quick inflow of susceptible individuals becoming infected as they come in contact with the 
infected except the fraction of those that are vaccinated. At the same time, Figure 2 describes 
the behaviour of infected subpopulation with time. As time increases, the gradual rise depicts 
that in the absence of interventions, more human individuals get infected. 
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Figure. 1.  S(t) against Time(t) 

 

 

Figure. 2.  I(t) against Time(t) 
 
Figure 3 describes the behaviour of vaccinated sub-population with time. As time increases, the 
gradual decline depicts that as more human individuals get vaccinated, infection becomes low 
in the human host community. Similarly, Figure 4 describes the behaviour of the recovered sub-
population with time. As time increases, the behaviour shows that more human individuals 
recover with compliance to vaccination and medical intervention strategies.  
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Figure. 3.  V(t) againstTime (t) 
 

  

 
                                                                   

Figure. 4.  R(t) againstTime (t) 

4.2 Conclusion and Recommendations 
 
The differential transformation method is an efficient way to solve SIVR epidemic model when 
either computation or iteration is costly. That is, it is capable of reducing the size of 
computational work and still accurately provides the series solution with faster convergence 
rate. In this paper, a mathematical epidemic model of SIVR is formulated based on a system of 
first order differential equation. The model is analyzed in a positively invariant region. The 
reproduction number (R») of the model is obtained via the next generation matrix method, it 
was shown that if R» < 1, the model is locally stable at the infection-free equilibrium solutions. 
The numerical solution of the model is obtained by using Differential Transform Method 
(DTM) and Runge - Kutta fourth order method. The numerical results obtained show that it 
compares favourably with each other and that DTM method perform better. It is recommended 
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that this work can be further extended into an optimal control problem, age structure, fitting a 
real life data on some epidemic to the model considered. 
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