
1

THE DISCOVERY OF TOP-K DNA FREQUENT PATTERNS
WITH APPROXIMATE METHOD

Nittaya Kerdprasop and Kittisak Kerdprasop

Data Engineering and Knowledge Engineering Research Units, School
of Computer Engineering, Suranaree University of Technology,

Nakhon Ratchasima, Thailand
nittaya@sut.ac.th, kittisakThailand@gmail.com

Abstract

Top-k frequent pattern discovery is indeed an association analysis concerning automatic
extraction of the k most correlated and interesting patterns from large databases. Current
studies in association mining concentrate on how to effectively find all objects that are
frequently co-occurring. Given a set of objects with m features, there are almost 2m

frequent patterns to consider. For DNA data that are normally very high in dimensionality,
frequent pattern discovery from genetic data is obviously a computationally expensive
problem. We therefore devise an approximate approach to tackle this problem. We propose
an approximate method based on the window sliding concept to estimate data density and
obtain data characteristics from a small set of samples. Then we draw a set of
representatives with reservoir sampling technique. These representatives are subsequently
used in the main process of frequent pattern mining. Our designed algorithm had been
implemented with the Erlang language, which is the functional programming paradigm
with inherent support for pattern matching. The experimental results confirm the efficiency
and reliability of our approximate method.

Keywords: Top-k frequent patterns, Approximate method, DNA patterns, Window sliding, Reservoir
sampling, Erlang language

1. Introduction

Frequent pattern discovery is an essential operation for association analysis, which is the

discovery process concerning an automatic extraction of interesting patterns and correlations
from a large database. These patterns can reveal implicit relationships among set of objects (or
items) that lead to the generation of association rules in a form of “if antecedents then
consequences.” These rules have the potential use in medical diagnosis, customer behavioural
forecast, financial decision support, and many other applications. The process of finding all
frequent itemsets in a database is computationally expensive because it involves the search for
all item combinations. For a data set with high dimensionality such as the genetic data, finding
only top-k frequent itemsets is more practical than searching for all itemsets that meet the
minimum support threshold. Top-k frequent pattern discovery (Han et al., 2002) limits the
search space to the k most frequently occurred patterns across the database.

In this paper, we study the top-k frequent pattern discovery in the data streaming scenario.
The discovery of frequent patterns from a stream is considered a hard problem because
of a continuously generated nature of stream that does not allow a revisit over passing data
element. Moreover, the discovery process has been required to be fast to produce immediate
results. From these requirements, we thus devise an approximate approach to solve the problem
of top-k pattern discovery over continuous stream using the DNA data as an illustration. Our
approximate algorithm is intended to be applied to process a stream prior to the pattern
discovery process. The organization of this paper is as follows. After the literature review
regarding association analysis and frequent pattern mining in section 2, we present our method
in section 3. The experimental results are demonstrated in section 4. We conclude our paper in
section 5 with the discussion of future research direction.

2

2. Literature Review

Since the introduction of the AIS (Agrawal-Imielinski-Swami) algorithm (Agrawal and
Srikant, 1994b) by the three members of IBM Almaden Research Center in 1993 (Agrawal et
al., 1993), the concept of association rule mining from transactional databases has received
much interest from many data mining researchers. A year later, Rakesh Agrawal and
Ramakrishnan Srikant (1994a; 1994b) improved the algorithm by reducing its search space with
apriori property of the search through a frequent itemset lattice. This new algorithm has been
named Apriori. The advent of Apriori algorithm is a major milestone of advancement in
association analysis.

Apriori algorithm has been widely used as a basis for subsequent improvement proposed
by a number of research teams. Park et al. (1995a) proposed to use hashing technique for the
improvement of frequent itemset search. Han and Fu (1995) introduced the idea of discovering
multiple levels of association rules. For a very large transactional database, Savasere et al.
(1995) suggested to split the database and then search for associative relationships in a reduced
data set. Toivonen (1996) tackled the large database problem with a sampling idea to search for
interesting association from data representatives. Cheung et al. (1996a) considered an
incremental approach for gradually learning of association among itemsets. Parallel
computation is another mainstream of research to speed up association rule mining (Park et al.,
1995b; Agrawal and Shafer, 1996; Zaki et al., 1997).

For a non-Apriori based association mining algorithm, the FP-growth algorithm that uses
a tree structure to store frequent itemsets is an efficient method for extracting frequent patterns.
The algorithm had been proposed by Han et al. (2000) and gained popularity since then
(Agrawal et al., 2001; Pei et al., 2001; Liu et al., 2002; Grahne and Zhu, 2003).

In the emerging era of cloud technology, distributed computation of frequent patterns can
be effectively accomplished. The research along this line has started since the last two
decades (Cheung et al., 1996b) and it is still an active research area (Coenen and Leng, 2006;
Tseng et al., 2010; Zhu et al., 2011; Lin et al., 2013; Cuzzocrea et al., 2014; Elayyadi et al.,
2014).

With the advanced mobile devices, data collection and broadcasting occur at a very high
speed. The frequent pattern discovery algorithms have to deal with the new kind of data, i.e.,
streaming data. A data stream is a sequence of digitally encoded data that are continuously
transmitted from distributed sources (Guha et al., 2001; Babcock et al., 2002; Gaber et al.,
2005; Jiang and Gruenwald, 2006). Kargupta et al. (2004) developed the VEDAS system to
monitor vehicles at real time. Cai et al. (2004) designed the MAIDS system to mine incidents
from data streams. Halatchev and Gruenwald (2005) proposed an estimation technique to guess
missing values in sensor data streams. Finding frequent itemsets over data stream is a research
problem studied by several researchers (Chang and Lee, 2004; Charikar et al., 2004; Chi et al.,
2004; Gaber et al., 2004; Ghoting and Parthasarathy, 2004; Li et al., 2004; Teng et al., 2004;
Yu et al., 2004; Lin et al., 2005; Mao et al., 2005).

The work presented in this paper is also along the line of distributed data stream
processing to find the top-k patterns from DNA data. To estimate the frequency of top-k
patterns, we adapted the Monte Carlo approximate method (Kerdprasop et al., 2006). The details
of our design will be discussed in the next section.

3. Approximate Method for Top-k Pattern Discovery

A framework of our approximate top-k frequent pattern discovery is presented in figure

1. Contribution of our work is the design and implementation of the approximation-via-sliding-
window (figure 2) and density-biased-sampling (figure 3) algorithms, whereas the frequent
pattern discovery is Apriori-based algorithm (Agrawal and Srikant, 1994). Our sampling
technique is based on the reservoir concept (Vitter, 1985; Kerdprasop et al., 2005), but data
representatives will be drawn only from the dense area. Thresholds for minimum density and
area size can be adjusted by user.

3

sa
m

p
le

s

density-biased-

sampling

algorithm

samples

Reservoir

(temporary
memory)

approximation-
via-sliding-window

algorithm

Data
...

Data

Frequent pattern

discovery algorithm

Association patterns

Figure 1. A framework of approximate method for top-k pattern discovery

Input: a set of data points represented as vectors
 Output: a new set of transformed data points annotated with density value

% Initialize windows
(1) Interact with user to obtain dimension value
(2) Generate window grid of size W along dimension axes

% Count density
(3) Sequential move on each window and count number of data points, N, in the window
(4) Record a list of window’s central point and its N value in a file F
(5) Return F as a set of transformed data

Figure 2. Pseudocode of the approximation-via-sliding-window algorithm

Input: a set of high density data from the approximation-via-sliding-window algorithm
 Output: a new set of data samples

(1) Extract data from a condense form and obtain a desired sampling choice from user

(2) If choice = ‘Density-biased Reservoir+Hashing’, then
(3) Interactive with user to obtain reservoir size
(4) Hash each data point to store in a reservoir R
(5) If collision occurs, then stored data item is replaced by a new one
(6) Repeat steps 4-5 until there is no more data point, and return R as output

(7) If choice = ‘Density-biased Reservoir+Simple Random Sampling’, then
(8) Interact with user to obtain the bin size
(9) Randomly select data point to store in a reservoir R //sampling without replacement
(10) Repeat step 9 until R is full, and return R as an output

(11) If choice = ‘Density-biased Reservoir+Rejection Sampling’, then
(12) Interact with user to obtain the bin size and interval I, I [0.0..0.5]
(13) Randomly select data point D // sampling without replacement
(14) Generate a uniform random number U from the range [0.0 .. 1.0]
(15) If U is within the range [0.5-I .. 0.5+I], then store D in R
(16) Otherwise, reject and discard D
(17) Repeat steps 13-16 until R is full, and return R as an output

Figure 3. Pseudocode of the density-biased-sampling algorithm

4

6

3

0
0 3 6 9

Figure 4. Twenty data points distributed within six windows of size 33

Our density-biased sampling technique (an algorithm in figure 2) has been designed to

handle streaming in which input data are continuously processed by the system. To analyse each
and every data item is almost impossible. We thus instead consider frequent patterns from the
representatives. The intuitive idea of selecting representative data with the approximation- via-
sliding-window algorithm can be demonstrated through a simple situation of processing a two-
dimensional data set containing 20 data points, which are shown in figure 4. For the purpose of
concise demonstration, we assume that the data points in this example limit themselves within
the scale 9x6 along the horizontal and vertical axes, respectively.

The first step of a stream data density estimation is to decide the size of small grids,
which we call windows in our algorithm. Suppose we choose the size 33. The boundaries of
each window can be listed with intervals in the <x,y> coordinates as follows (note that the
interval such as [0,3) represents the values ranging from zero up to 3, but does not include 3) :

Range along <x,y> axes Range along <x,y> axes

window : < [0,3), [0,3) > window : < [0,3), [3,6] > window :
< [3,6), [0,3) > window : < [3,6), [3,6] > window : < [6,9],
[0,3) > window : < [6,9], [3,6] >

Data points in each window will be counted and condensed to the representation format

that consumes less memory. The condensed form is per window, instead of per data point. In
this condensed form, we store the central location of a window together with the number of data
points existing in that window. For instance, all five data points in window will be packed and
stored as { <1.5,4.5> , 5 }, where <1.5,4.5> is the central point of this window. All
20 data points will be transformed as shown in Figure 5. These transformed data points that
meet the minimum density requirement are the output of the approximation-via-sliding-window
algorithm, and also the input for the density-biased sampling algorithm.

 Raw data Transformed data Output

<1,1> <2,4> <5,4> { <1.5,1.5>, 4 }

<1,1> <2,5> <5,5> window { <4.5,1.5>, 4 } density { <1.5,1.5>, 4 }
<1,4> <3,2> <7,4> size=33 { <7.5,1.5>, 2 } threshold=4 { <4.5,1.5>, 4 }
<1,5> <4,2> <7,5> { <1.5,4.5>, 5 } { <1.5,4.5>, 5 }
<2,1> <4,4> <8,2> { <4.5,4.5>, 3 }

<2,2> <5,1> <9,1> { <7.5,4.5>, 2 }

<2,3> <5,2> <5,4>

Figure 5. The transformation from raw data to the {central-point, density} format and the final
output of approximation-via-sliding-window algorithm

5

 Condensed data Data representatives

{ <1.5,1.5>, 4 } <1.5,1.5>, <1.5,1.5>, <1.5,1.5>, <1.5,1.5>
{ <4.5,1.5>, 4 } <4.5,1.5>, <4.5,1.5>,<4.5,1.5>,<4.5,1.5>,

{ <1.5,4.5>, 5 } <1.5,4.5>, <1.5,4.5>,<1.5,4.5>,<1.5,4.5>,<1.5,4.5>,

Figure 6. Data representatives that are generated back from the condensed format

The first step of the density-biased-sampling algorithm is the extraction of data points
that are stored in the condensed form. After the extraction process, we obtain the representative
data points as illustrated in figure 6. In the sampling step, user can choose different schemes of
sample draw and temporary memory maintenance as follows:

 Density-biased reservoir + Hashing
 Density-biased reservoir + Simple random sampling
 Density-biased reservoir + Rejection sampling

A set of samples drawn from streaming data is then forwarded to the Apriori-based
frequent pattern discovery algorithm (Agrawal and Srikant, 1994).

4. Experimental Results

A. DNA Data Set

The proposed approximate method has been applied to find top-k frequent patterns from

the DNA data set (available at http://archive.ics.uci.edu/ml/datasets/). This data set contains
3,186 instances. We split the data into two parts: the first 2,000 instances to be used as a
training data and the rest 1,186 instances are for testing correctness of the discovered
patterns. Each data instance is a sequence of 60 genetic codes (A=adenine, T=thymine,
C=cytosine, G=guanine) obtained from different location of a gene. Some data samples are
displayed in figure 7.

These genetic codes can be categorized as either exon/intron, intron/exon, or none. The
exon/intron is the border region of genetic codes that links the exon part to the intron part.
The intron/exon can be interpreted in the same manner, but vice versa. Exon is the part
containing genetic codes that control the protein synthesis. Intron is the intervening area
between exons and it will later be discarded before the synthesis of proteins. The none
category is the genetic string that does not bear genetic codes for protein synthesis. The
structure of exon and intron in a gene is schematically shown in figure 8.

T,T,C,T,A,T,G,A,G,A,A,A,C,G,T,G,G,C,A,T,T,G,T,G,C,G,C,A,A,G,G,T,G,G,G,C,C,C,
C,G,C,G,G,G,A,C,G,G,G,G,C,A,G,C,T,C,C,G,G,G,exon/intron

C,T,C,C,C,C,A,C,C,C,A,C,C,T,G,T,C,C,A,C,C,C,G,C,C,C,G,C,A,G,A,T,C,G,C,T,T,C,C,
T,G,G,A,G,C,C,A,G,G,C,A,A,G,A,A,C,T,C,C,A,intron/exon

C,T,G,A,C,T,A,A,G,C,C,G,C,C,C,C,T,T,G,T,C,C,C,T,T,C,T,C,A,G,A,T,T,A,T,G,T,T,T,
G,A,G,A,C,C,T,T,C,A,A,C,A,C,C,C,C,G,G,C,C,intron/exon

G,A,G,G,A,G,C,T,A,G,A,C,A,A,G,T,A,C,T,G,G,T,C,T,C,A,G,C,A,G,G,T,G,C,G,T,G,A,
G,G,G,G,A,G,G,G,G,A,T,G,G,C,T,G,C,C,A,A,G,G,exon/intron

A,A,G,G,C,T,C,A,G,G,A,G,G,A,G,G,G,A,G,A,T,C,A,A,C,A,T,C,A,A,C,C,T,G,C,C,C,C,G,

C,C,C,C,C,T,C,C,C,C,A,G,C,C,T,G,A,T,A,A,A,none

Figure 7. Some DNA data instances

6

Figure 8. Structure of a gene with exon and intron parts (http://genome.gov/Glossary/)

B. Testing Scheme

We test the performance of our approximate method by simulating the DNA data set
as a data stream, then feeding a stream to the density approximation and sampling
algorithms. Data representatives are stored in a temporary memory area, called a reservoir.
The representatives are finally processed by the frequent pattern discovery algorithm to find
the top-k patterns. Completeness of the approximately discovered patterns is justified by the
comparison against the frequent patterns that are discovered without the application of
approximate method.

C. Program Running Results

We implemented our approximate frequent pattern discovery method with the Erlang

programming language. The running result of the main function is shown in figure 9. Our
approximate frequent pattern discovery program finds the frequent patterns of a specific
class. In figure 9, we show the frequent patterns of a class intron/exon with the minimum
support = 80%. At this level of support value, there are 3 frequent patterns of length 1 (k=1,
or 1-item sets), 3 frequent patterns of length 2 (k=2, or 2-item sets), and 1 frequent pattern
of length 3 (k=3, or 3-item set). These seven patterns (shown inside the red square in figure
9) can be interpreted as follows:

[“AM”] means occurrence of the adenine base (A) at location 29 (ASCII code of M) in a

DNA string

[“CL”] means occurrence of the cytosine base (C) at location 28 (ASCII code of L) in a
DNA string

[“GN”] means occurrence of the guanine base (G) at location 30 (ASCII code of N) in a
DNA string

[“AM”, “CL”] means co-occurrence of the adenine base at location 29 and cytosine base at
location 28 in a DNA string

[“AM”, “GN”] means co-occurrence of the adenine base at location 29 and guanine base at
location 30 in a DNA string

[“CL”, “GN”] means co-occurrence of the cytosine base at location 28 and guanine base at
location 30 in a DNA string

[“AM”, “CL”, “GN”] means co-occurrence of the adenine base at location 29, cytosine
base at location 28, and guanine base at location 30 in a DNA string

7

Figure 9. Running result of intron/exon frequent patterns with at least 80% of occurrence
frequency (that is, minimum support = 80%)

Figure 10. The result of comparing the pattern [“AM”,”GN”] against the test data

Correctness of the discovered frequent patterns can be confirmed through the use of
“findSupOf” function to predict the probable area of a gene in the test data set. Figure 10
shows the confirmation of the pattern [“AM”,”GN”], which is one of the discovered
frequent patterns of a class intron/exon, through the search and comparison of this pattern
against the whole test set. We found that this pattern matched 41 sub-patterns in the class
none, 149 sub-patterns in the class exon/intron, and 278 sub-patterns in the class
intron/exon. Based on the majority matching, we thus conclude that the discovered pattern
[“AM”,”GN”] correctly represents the top frequent patterns of the class intron/exon.

For completeness confirmation, we compared the patterns discovered from our
approximate method with those obtained from the traditional method that does not apply
the density approximation and sampling technique. With varied percentages of minimum
support value, our approximate method can discover patterns very close to the traditional
method. The results are summarized in table 1.

8

Table 1. Comparative results of number of patterns discovered from our approximate method with
those discovered from traditional method.

Minimum
support

Traditional pattern discovery
method

Approximate method
#Matched
patterns

1-
item

2-
item

3-
item

4-
item

1-
item

2-
item

3-
item

4-
item

Class = “none”

50% 0 0 0 0 0 0 0 0 0
45% 0 0 0 0 0 0 0 0 0
40% 0 0 0 0 0 0 0 0 0
35% 0 0 0 0 0 0 0 0 0
30% 1 0 0 0 1 0 0 0 1
25% 117 0 0 0 111 0 0 0 111

Class = “exon/intron”

85% 3 2 0 0 3 2 0 0 5
80% 4 5 2 0 4 5 2 0 11
75% 4 5 2 0 4 5 2 0 11
70% 4 6 3 0 4 6 3 0 13
65% 5 8 5 1 5 8 5 1 19
60% 5 9 7 2 5 8 5 1 19

Class = “intron/exon”

85% 2 1 0 0 2 1 0 0 3
80% 3 3 1 0 3 3 1 0 7
75% 3 3 1 0 3 3 1 0 7
70% 3 3 1 0 3 3 1 0 7
65% 3 3 1 0 3 3 1 0 7
60% 3 3 1 0 3 3 1 0 7

Table 2. Averaging summary of matched patterns against the test data.

Class

Matched patterns
(traditional method)

Matched patterns
(approximatie

method)

Difference
(traditional vs
approximate)

2-item
patterns

3-item
patterns

2-item
patterns

3-item
patterns

2-item
patterns

3-item
patterns

none

--

--

--

--

--

--

exon/intron

91.24%

84.35%

90.98%

83.27%

0.26

1.08

intron/exon

90.11%

87.62%

90.09%

86.89%

0.02

0.73

The comparative results shown in table 1 have been performed on the training data set.
When matching the discovered patterns against the DNA patterns in the test data set, we
found that the difference of patterns matched by our approximate method to the ones that
matched by traditional method is only 0.52% (averaging from the difference values: 0.26,
1.08, 0.02, 0.73). We therefore conclude from this empirical study that the discovery of
frequent patterns from randomly selected representatives from a data stream yields the
patterns as complete and accurate as the standard method that finds patterns from the whole
large data set.

9

5. Conclusions

Frequent pattern discovery is an essential operation for association analysis. The
discovery process concerns an automatic extraction of interesting patterns and correlations from
a large database. These patterns can reveal implicit relationships among set of objects (or items)
that lead to the generation of association rules to be used for decision support, financial forecast,
medical diagnosis, and many other applications. Current studies in association rule mining
concentrate on how to effectively find all objects frequently co-occurring. Given m objects,
there are as much as 2m frequent patterns to consider. Frequent pattern discovery is thus a
computationally expensive problem. For the case of data streaming, this problem is even harder
because a continuously generated nature of stream does not allow a revisit on each data element,
but the discovery process must produce results in a reasonable short period of time.

With such a strict requirement, we therefore propose an approximate approach to tackle
the frequent pattern discovery over continuous stream problem. Our approximate algorithm is
intended to be a pre-processing step prior to the discovery process. We propose a stochastic
method to get a good guess of the stream characteristics, and then draw a set of representatives
from the incoming stream. These representatives are subsequently used in the process of
frequent pattern mining. Our design had been implemented with the functional programming
paradigm and the experimental results confirm the efficiency and reliability of our method. For
a massive database, parallel method is a solution for the scalability problem. That is the main
direction of our future research.

Acknowledgement

This research has been supported by grants from the Thailand Research Fund and the National
Research Council of Thailand. The authors have been supported by Suranaree University of
Technology through the funding of the Data Engineering Research Unit and the Knowledge
Engineering Research Unit.

References

Agrawal R., Aggarwal C. and Prasad V., A tree projection algorithm for generation of frequent
itemsets, Journal of Parallel and Distributed Computing, Vol. 61, pp. 350-371 (2001).

Agrawal R., Imielinski T. and Swami A., Mining association rules between sets of items in large

databases, In Proc. ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'93), pp. 207-
216 (1993).

Agrawal R. and Srikant R., Fast algorithm for mining association rules in large databases,

Research Report RJ 9839, IBM Almaden Research Center, San Jose, CA. (1994a).

Agrawal R. and Srikant R., Fast algorithms for mining association rules, In Proc. 1994 Int.
Conf. Very Large Data Bases (VLDB'94), pp. 487-499 (1994b).

Agrawal R. and Shafer J., Parallel mining of association rules: Design, implementation, and

experience, IEEE Trans. Knowledge and Data Engineering, Vol. 8, pp. 962-969 (1996).

Babcock B., Babu S., Datar M., Motwani R. and Widom J., Model and issues in data stream
systems, In Proc. ACM Symp. Principles of Database Systems (PODS’02), pp. 1-16 (2002).

Cai Y., Pape G., Han J., Welge M. and Auvil L., MAIDS: Mining alarming incidents from data

streams, In Proc. Int. Conf. on Management of Data, pp. 919-920 (2004).

10

Chang J. and Lee W., A sliding window method for finding recently frequent itemsets over
online data streams, Journal of Information Science and Engineering, Vol. 20, No. 4, pp.
753-762 (2004).

Charikar M., Chen K. and Farach-Colton M., Finding frequent items in data streams,

Theoretical Computer Science, Vol. 312, Issue 1, pp. 3-15 (2004).

Cheung D., Han J., Ng V., Fu A. and Fu Y., A fast distributed algorithm for mining association
rules, In Proc. 1996 Int. Conf. Parallel and Distributed Information Systems, pp. 31-44,
(1996a).

Cheung D., Han J., Ng V. and Wong C., Maintenance of discovered association rules in large

databases: An incremental updating technique, In Proc. 1996 Int. Conf. Data Engineering
(ICDE'96), pp. 106-114 (1996b).

Chi Y., Wang H., Yu P. and Muntz R., Moment: Maintaining closed frequent itemsets over a

stream sliding window, In Proc. IEEE Int. Conf. on Data Mining, pp. 59-66 (2004).

Coenen F. and Leng P., Partitioning strategies for distributed association rule mining, The
Knowledge Engineering Review, Vol. 21, Issue 1, pp. 25-47 (2006).

Cuzzocrea A., Leung C. and MacKinnon R., Mining constrained frequent itemsets from

distributed uncertain data, Future Generation Computer Systems, Vol. 37, pp. 117-126
(2014).

Elayyadi I., Benbernou S., Ouziri M. and Younas M., A tensor-based distributed discovery of

missing association rules on the cloud. Future Generation Computer Systems, Vol. 35, pp.
49-56 (2014).

Gaber M., Zaslavsky A. and Krishnaswamy S., Resource-aware knowledge discovery in data

streams, In Proc. Int. Workshop on Knowledge Discovery in Data Streams, pp. 649-656
(2004).

Gaber M., Zaslavsky A. and Krishnaswamy S., Mining data streams: A review, ACM SIGMOD

Record, Vol. 34, Issue 2, pp. 18-26 (2005).

Ghoting A. and Parthasarathy S., Facilitating interactive distributed data stream processing and
mining, In Proc. IEEE Int. Symposium on Parallel and Distributed Processing Systems
(2004).

Grahne G. and Zhu J., Efficiently using prefix-trees in mining frequent itemsets, In Proc.

ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), pp. 123-
132 (2003).

Guha S., Koudas N. and Shim K., Data streams and histograms, In Proc. ACM Symposium on

Theory of Computing, pp. 471-475 (2001).

Halatchev M. and Gruenwald L., Estimating missing values in related sensor data streams, In
Proc. Int. Conf. on Management of Data, pp. 83-94 (2005).

Han J. and Fu Y., Discovery of multiple-level association rules from large databases, In Proc.

1995 Int. Conf. Very Large Data Bases (VLDB'95), pp. 420-431 (1995).

Han J., Pei J. and Yin Y., Mining frequent patterns without candidate generation, In Proc. 2000
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00), pp. 1-12 (2000).

11

Han J., Wang J., Lu Y. and Tzvetkov P., Mining top-k frequent closed patterns without
minimum support, in Proc. Int. Conf. on Data Mining, pp. 211-218 (2002).

Jiang M. and Gruenwald L., Research issues in data stream association mining, ACM SIGMOD

Record, Vol. 35, Issue 1, pp. 14-19 (2006).

Kargupta H., Bhargava R., Liu K., Powers M., Blair P., Bushra S., Dull J., Sarkar K., Klein M.,
Vasa M. and Handy D., VEDAS: A mobile and distributed data stream mining system for
real-time vehicle monitoring, In Proc. SIAM Int. Conf. on Data Mining, pp. 300-311
(2004).

Kerdprasop K., Kerdprasop N. and Sattayatham P., Density-biased clustering based on reservoir

sampling, In Proc. 16th Int. Workshop on Database and Expert Systems Applications
(DEXA), pp. 1122-1126 (2005).

Kerdprasop K., Kerdprasop N. and Sattayatham P., A Monte Carlo method to data stream

analysis, Enformatika Transactions on Engineering, Computing and Technology, Vol.14,
pp. 240-245 (2006).

Li H., Lee S. and Shan M., An efficient algorithm for mining frequent itemsets over the entire

history of data streams, In Proc. Int. Workshop on Knowledge Discovery in Data Streams
(2004).

Lin C., Chiu D., Wu Y. and Chen A., Mining frequent itemsets from data streams with a time-

sensitive sliding window, In Proc. SIAM Int. Conf. on Data Mining (2005).

Lin Y., Hu X., Li X., and Wu X., Mining stable patterns in multiple correlated databases,
Decision Support Systems, Vol. 56, pp. 202-210 (2013).

Liu J., Pan Y., Wang K. and Han J., Mining frequent item sets by opportunistic projection, In

Proc. 2002 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD'02), pp.
239-248 (2002).

Mao G., Wu X., Liu C., Zhu X., Chen G., Sun Y. and Liu X., Online mining of maximal

frequent item sequences from data streams, Technical Report CS-05-07, University of
Vermont, U.S.A. (2005).

Park J., Chen M. and Yu P., An effective hash-based algorithm for mining association rules, In

Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'95), pp. 175-186
(1995a).

Park J., Chen M. and Yu P., Efficient parallel mining for association rules, In Proc. 4th Int.

Conf. Information and Knowledge Management, pp. 31-36 (1995b).

Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U. and Hsu M., PrefixSpan: Mining
sequential patterns efficiently by prefix-projected pattern growth, In Proc. 2001 Int. Conf.
Data Engineering (ICDE'01), pp. 215-224 (2001).

Savasere A., Omiecinski E. and Navathe S., An efficient algorithm for mining association rules

in large databases, In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB'95), pp. 432-
443 (1995).

Teng W., Chen M. and Yu P., Resource-aware mining with variable granularities in data

streams, In Proc. SIAM Int. Conf. on Data Mining (2004).

12

Toivonen H., Sampling large databases for association rules, In Proc. 1996 Int. Conf. Very
Large Data Bases (VLDB'96), pp. 134-145 (1996).

Tseng F., Kuo Y. and Huang Y., Toward boosting distributed association rule mining by data

de-clustering, Information Sciences, Vol. 180, pp. 4263-4289 (2010).

Vitter J., Random sampling with a reservoir, ACM Transaction on Mathematical Software, Vol.
11, No.1, pp. 37-57 (1985).

Yu J., Chong Z., Lu H. and Zhou A., False positive or false negative: Mining frequent itemsets

from high speed transactional data streams, In Proc. Int. Conf. on Very Large Databases
(2004).

Zaki M., Parthasarathy S., Ogihara M. and Li W., Parallel algorithm for discovery of association

rules, Data Mining and Knowledge Discovery, Vol.1, pp. 343-374 (1997).

Zhu X., Li B., Wu X., He D. and Zhang C., CLAP: collaborative pattern mining for distributed
information systems, Decision Support Systems, Vol. 52, Issue 1, pp. 40-51 (2011).

