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Abstract 

 
Top-k frequent pattern discovery is indeed an association analysis concerning automatic 
extraction of the k most correlated and interesting patterns from large databases. Current 
studies in association mining concentrate on how to effectively find all objects that are 
frequently co-occurring. Given a set of objects with m features, there are almost 2m 

frequent patterns to consider. For DNA data that are normally very high in dimensionality, 
frequent pattern discovery from genetic data is obviously a computationally expensive 
problem. We therefore devise an approximate approach to tackle this problem. We propose 
an approximate method based on the window sliding concept to estimate data density and 
obtain data characteristics from a small set of samples. Then we draw a set of 
representatives with reservoir sampling technique. These representatives are subsequently 
used in the main process of frequent pattern mining. Our designed algorithm had been 
implemented with the Erlang language, which is the functional programming paradigm 
with inherent support for pattern matching. The experimental results confirm the efficiency 
and reliability of our approximate method. 

 

Keywords: Top-k frequent patterns, Approximate method, DNA patterns, Window sliding, Reservoir 
sampling, Erlang language 

 
1.  Introduction 

 
Frequent pattern discovery is an essential operation for association analysis, which is the 

discovery process concerning an automatic extraction of interesting patterns and correlations 
from a large database. These patterns can reveal implicit relationships among set of objects (or 
items) that lead to the generation of association rules in a form of “if  antecedents then 
consequences.” These rules have the potential use in medical diagnosis, customer behavioural 
forecast, financial decision support, and many other applications. The process of finding all 
frequent itemsets in a database is computationally expensive because it involves the search for 
all item combinations. For a data set with high dimensionality such as the genetic data, finding 
only top-k frequent itemsets is more practical than searching for all itemsets that meet the 
minimum support threshold. Top-k frequent pattern discovery (Han et al., 2002) limits the 
search space to the k most frequently occurred patterns across the database. 

In this paper, we study the top-k frequent pattern discovery in the data streaming scenario. 
The discovery of frequent patterns from a stream is considered a hard problem because 
of a continuously generated nature of stream that does not allow a revisit over passing data 
element. Moreover, the discovery process has been required to be fast to produce immediate 
results. From these requirements, we thus devise an approximate approach to solve the problem 
of top-k pattern discovery over continuous stream using the DNA data as an illustration. Our 
approximate algorithm is intended to be applied to process a stream prior to the pattern 
discovery process. The organization of this paper is as follows. After the literature review 
regarding association analysis and frequent pattern mining in section 2, we present our method 
in section 3. The experimental results are demonstrated in section 4. We conclude our paper in 
section 5 with the discussion of future research direction.
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2.  Literature Review 
 

Since the introduction of the AIS (Agrawal-Imielinski-Swami) algorithm (Agrawal and 
Srikant, 1994b)  by the three members of IBM Almaden Research Center in 1993 (Agrawal et 
al., 1993), the concept of association rule mining from transactional databases has received 
much interest from many data mining researchers. A year later, Rakesh Agrawal and 
Ramakrishnan Srikant (1994a; 1994b) improved the algorithm by reducing its search space with 
apriori property of the search through a frequent itemset lattice. This new algorithm has been 
named Apriori. The advent of Apriori algorithm is a major milestone of advancement in 
association analysis. 

Apriori algorithm has been widely used as a basis for subsequent improvement proposed 
by a number of research teams. Park et al. (1995a) proposed to use hashing technique for the 
improvement of frequent itemset search. Han and Fu (1995) introduced the idea of discovering 
multiple levels of association rules. For a very large transactional database, Savasere et al. 
(1995) suggested to split the database and then search for associative relationships in a reduced 
data set. Toivonen (1996) tackled the large database problem with a sampling idea to search for 
interesting association from data representatives. Cheung et al. (1996a) considered an 
incremental approach for gradually learning of association among itemsets. Parallel 
computation is another mainstream of research to speed up association rule mining (Park et al., 
1995b; Agrawal and Shafer, 1996; Zaki et al., 1997). 

For a non-Apriori based association mining algorithm, the FP-growth algorithm that uses 
a tree structure to store frequent itemsets is an efficient method for extracting frequent patterns. 
The algorithm had been proposed by Han et al. (2000) and gained popularity since then 
(Agrawal et al., 2001; Pei et al., 2001; Liu et al., 2002; Grahne and Zhu, 2003). 

In the emerging era of cloud technology, distributed computation of frequent patterns can 
be effectively accomplished. The research along this line has started since the last two 
decades (Cheung et al., 1996b) and it is still an active research area (Coenen and Leng, 2006; 
Tseng et al., 2010; Zhu et al., 2011; Lin et al., 2013; Cuzzocrea et al., 2014; Elayyadi et al., 
2014). 

With the advanced mobile devices, data collection and broadcasting occur at a very high 
speed. The frequent pattern discovery algorithms have to deal with the new kind of data, i.e., 
streaming data. A data stream is a sequence of digitally encoded data that are continuously 
transmitted from distributed sources (Guha et al., 2001; Babcock et al., 2002; Gaber et al., 
2005; Jiang and Gruenwald, 2006). Kargupta et al. (2004) developed the VEDAS system to 
monitor vehicles at real time. Cai et al. (2004) designed the MAIDS system to mine incidents 
from data streams. Halatchev and Gruenwald (2005) proposed an estimation technique to guess 
missing values in sensor data streams. Finding frequent itemsets over data stream is a research 
problem studied by several researchers (Chang and Lee, 2004; Charikar et al., 2004; Chi et al., 
2004; Gaber et al., 2004; Ghoting and Parthasarathy, 2004; Li et al., 2004; Teng et al., 2004; 
Yu et al., 2004; Lin et al., 2005; Mao et al., 2005). 

The work presented in this paper is also along the line of distributed data stream 
processing to find the top-k patterns from DNA data. To estimate the frequency of top-k 
patterns, we adapted the Monte Carlo approximate method (Kerdprasop et al., 2006). The details 
of our design will be discussed in the next section. 

 
3.  Approximate Method for Top-k Pattern Discovery 

 
A framework of our approximate top-k frequent pattern discovery is presented in figure 

1. Contribution of our work is the design and implementation of the approximation-via-sliding- 
window (figure 2) and density-biased-sampling (figure 3) algorithms, whereas the frequent 
pattern discovery is Apriori-based algorithm (Agrawal and Srikant, 1994). Our sampling 
technique is based on the reservoir concept (Vitter, 1985; Kerdprasop et al., 2005), but data 
representatives will be drawn only from the dense area. Thresholds for minimum density and 
area size can be adjusted by user.
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Figure 1.  A framework of approximate method for top-k pattern discovery 
 

 
 
 

Input:    a set of data points represented as vectors 
        Output: a new set of transformed data points annotated with density value   

 

% Initialize windows 
(1)   Interact with user to obtain dimension value 
(2)   Generate window grid of size W along dimension axes 

% Count density 
(3)   Sequential move on each window and count number of data points, N, in the window 
(4)   Record a list of window’s central point and its N value in a file F 
(5)   Return F as a set of transformed data 

 

 

Figure 2. Pseudocode of the approximation-via-sliding-window algorithm 
 

 
 

Input:    a set of high density data from the approximation-via-sliding-window algorithm 
     Output: a new set of data samples   

 

(1)   Extract data from a condense form and obtain a desired sampling choice from user 
 

(2)   If choice = ‘Density-biased Reservoir+Hashing’, then 
(3)         Interactive with user to obtain reservoir size 
(4)         Hash each data point to store in a reservoir R 
(5)         If collision occurs, then stored data item is replaced by a new one 
(6)         Repeat steps 4-5 until there is no more data point, and return R as output 

 

(7)   If choice = ‘Density-biased Reservoir+Simple Random Sampling’, then 
(8)         Interact with user to obtain the bin size 
(9)        Randomly select data point to store in a reservoir R  //sampling without replacement 
(10)       Repeat step 9 until R is full, and return R as an output 

 

(11)  If choice = ‘Density-biased Reservoir+Rejection Sampling’, then 
(12)       Interact with user to obtain the bin size and interval I, I  [0.0..0.5] 
(13)       Randomly select data point D                                 // sampling without replacement 
(14)       Generate a uniform random number U from the range [0.0 .. 1.0] 
(15)        If U is within the range [0.5-I .. 0.5+I], then store D in R 
(16)                     Otherwise, reject and discard D 
(17)        Repeat steps 13-16 until R is full, and return R as an output 

 

 

Figure 3. Pseudocode of the density-biased-sampling algorithm
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Figure 4. Twenty data points distributed within six windows of size 33 

 

 
Our density-biased sampling technique (an algorithm in figure 2) has been designed to 

handle streaming in which input data are continuously processed by the system. To analyse each 
and every data item is almost impossible. We thus instead consider frequent patterns from the 
representatives. The intuitive idea of selecting representative data with the approximation- via-
sliding-window algorithm can be demonstrated through a simple situation of processing a two-
dimensional data set containing 20 data points, which are shown in figure 4. For the purpose of 
concise demonstration, we assume that the data points in this example limit themselves within 
the scale 9x6 along the horizontal and vertical axes, respectively. 

The first step of a stream data density estimation is to decide the size of small grids, 
which we call windows in our algorithm. Suppose we choose the size 33. The boundaries of 
each window can be listed with intervals in the <x,y> coordinates as follows (note that the 
interval such as [0,3) represents the values ranging from zero up to 3, but does not include 3) : 

 

Range along <x,y> axes                                                     Range along <x,y> axes 

window :    < [0,3), [0,3) >                                     window :    < [0,3), [3,6] > window :    
< [3,6), [0,3) >                                     window :    < [3,6), [3,6] > window :    < [6,9], 
[0,3) >                                     window :    < [6,9], [3,6] > 

 
Data points in each window will be counted and condensed to the representation format 

that consumes less memory. The condensed form is per window, instead of per data point. In 
this condensed form, we store the central location of a window together with the number of data 
points existing in that window. For instance, all five data points in window  will be packed and 
stored as { <1.5,4.5> , 5 }, where <1.5,4.5> is the central point of this window. All 
20 data points will be transformed as shown in Figure 5. These transformed data points that 
meet the minimum density requirement are the output of the approximation-via-sliding-window 
algorithm, and also the input for the density-biased sampling algorithm. 

 
               Raw data                                     Transformed data                                 Output   

 

<1,1> <2,4> <5,4>  { <1.5,1.5>, 4 }  

<1,1> <2,5> <5,5> window { <4.5,1.5>, 4 } density { <1.5,1.5>, 4 } 
<1,4> <3,2> <7,4> size=33 { <7.5,1.5>, 2 } threshold=4 { <4.5,1.5>, 4 } 
<1,5> <4,2> <7,5>  { <1.5,4.5>, 5 }  { <1.5,4.5>, 5 } 
<2,1> <4,4> <8,2>  { <4.5,4.5>, 3 }   

<2,2> <5,1> <9,1>  { <7.5,4.5>, 2 }   

<2,3> <5,2> <5,4>     
 

Figure 5. The transformation from raw data to the {central-point, density} format and the final 
output of approximation-via-sliding-window algorithm
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    Condensed data                                                       Data representatives   

{ <1.5,1.5>, 4 }                         <1.5,1.5>, <1.5,1.5>, <1.5,1.5>, <1.5,1.5> 
{ <4.5,1.5>, 4 }                         <4.5,1.5>, <4.5,1.5>,<4.5,1.5>,<4.5,1.5>, 

{ <1.5,4.5>, 5 }                         <1.5,4.5>, <1.5,4.5>,<1.5,4.5>,<1.5,4.5>,<1.5,4.5>, 

Figure 6.  Data representatives that are generated back from the condensed format 

 

The first step of the density-biased-sampling algorithm is the extraction of data points 
that are stored in the condensed form. After the extraction process, we obtain the representative 
data points as illustrated in figure 6. In the sampling step, user can choose different schemes of 
sample draw and temporary memory maintenance as follows: 

    Density-biased reservoir + Hashing 
    Density-biased reservoir + Simple random sampling 
    Density-biased reservoir + Rejection sampling 

 

A set of samples drawn from streaming data is then forwarded to the Apriori-based 
frequent pattern discovery algorithm (Agrawal and Srikant, 1994). 

 
4.  Experimental Results 

 
A.   DNA Data Set 

 
The proposed approximate method has been applied to find top-k frequent patterns from 

the DNA data set (available at http://archive.ics.uci.edu/ml/datasets/). This data set contains 
3,186 instances. We split the data into two parts: the first 2,000 instances to be used as a 
training data and the rest 1,186 instances are for testing correctness of the discovered 
patterns. Each data instance is a sequence of 60 genetic codes (A=adenine, T=thymine, 
C=cytosine, G=guanine) obtained from different location of a gene. Some data samples are 
displayed in figure 7. 

These genetic codes can be categorized as either exon/intron, intron/exon, or none. The 
exon/intron is the border region of genetic codes that links the exon part to the intron part. 
The intron/exon can be interpreted in the same manner, but vice versa. Exon is the part 
containing genetic codes that control the protein synthesis. Intron is the intervening area 
between exons and it will later be discarded before the synthesis of proteins. The none 
category is the genetic string that does not bear genetic codes for protein synthesis. The 
structure of exon and intron in a gene is schematically shown in figure 8. 

 
 
 

T,T,C,T,A,T,G,A,G,A,A,A,C,G,T,G,G,C,A,T,T,G,T,G,C,G,C,A,A,G,G,T,G,G,G,C,C,C, 
C,G,C,G,G,G,A,C,G,G,G,G,C,A,G,C,T,C,C,G,G,G,exon/intron 

 

C,T,C,C,C,C,A,C,C,C,A,C,C,T,G,T,C,C,A,C,C,C,G,C,C,C,G,C,A,G,A,T,C,G,C,T,T,C,C, 
T,G,G,A,G,C,C,A,G,G,C,A,A,G,A,A,C,T,C,C,A,intron/exon 

 

C,T,G,A,C,T,A,A,G,C,C,G,C,C,C,C,T,T,G,T,C,C,C,T,T,C,T,C,A,G,A,T,T,A,T,G,T,T,T, 
G,A,G,A,C,C,T,T,C,A,A,C,A,C,C,C,C,G,G,C,C,intron/exon 

 

G,A,G,G,A,G,C,T,A,G,A,C,A,A,G,T,A,C,T,G,G,T,C,T,C,A,G,C,A,G,G,T,G,C,G,T,G,A, 
G,G,G,G,A,G,G,G,G,A,T,G,G,C,T,G,C,C,A,A,G,G,exon/intron 

 
A,A,G,G,C,T,C,A,G,G,A,G,G,A,G,G,G,A,G,A,T,C,A,A,C,A,T,C,A,A,C,C,T,G,C,C,C,C,G, 

C,C,C,C,C,T,C,C,C,C,A,G,C,C,T,G,A,T,A,A,A,none 

 
Figure 7. Some DNA data instances
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Figure 8. Structure of a gene with exon and intron parts (http://genome.gov/Glossary/) 
 
 
 

B.   Testing Scheme 
 

We test the performance of our approximate method by simulating the DNA data set 
as  a  data  stream,  then  feeding  a  stream to  the  density  approximation  and  sampling 
algorithms. Data representatives are stored in a temporary memory area, called a reservoir. 
The representatives are finally processed by the frequent pattern discovery algorithm to find 
the top-k patterns. Completeness of the approximately discovered patterns is justified by the 
comparison against the frequent patterns that are discovered without the application of 
approximate method. 

 
C.  Program Running Results 

 
We implemented our approximate frequent pattern discovery method with the Erlang 

programming language. The running result of the main function is shown in figure 9. Our 
approximate frequent pattern discovery program finds the frequent patterns of a specific 
class. In figure 9, we show the frequent patterns of a class intron/exon with the minimum 
support = 80%. At this level of support value, there are 3 frequent patterns of length 1 (k=1, 
or 1-item sets), 3 frequent patterns of length 2 (k=2, or 2-item sets), and 1 frequent pattern 
of length 3 (k=3, or 3-item set). These seven patterns (shown inside the red square in figure 
9) can be interpreted as follows: 

 
[“AM”] means occurrence of the adenine base (A) at location 29 (ASCII code of M) in a 

DNA string 
 

[“CL”] means occurrence of the cytosine base (C) at location 28 (ASCII code of L) in a 
DNA string 

 

[“GN”] means occurrence of the guanine base (G) at location 30 (ASCII code of N) in a 
DNA string 

 

[“AM”, “CL”] means co-occurrence of the adenine base at location 29 and cytosine base at 
location 28 in a DNA string 

 

[“AM”, “GN”] means co-occurrence of the adenine base at location 29 and guanine base at 
location 30 in a DNA string 

 

[“CL”, “GN”] means co-occurrence of the cytosine base at location 28 and guanine base at 
location 30 in a DNA string 

 

[“AM”, “CL”, “GN”] means co-occurrence of the adenine base at location 29, cytosine 
base at location 28, and guanine base at location 30 in a DNA string
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Figure 9. Running result of intron/exon frequent patterns with at least 80% of occurrence 
frequency (that is, minimum support = 80%) 

 

 
 
 
 

 
 

Figure 10. The result of comparing the pattern [“AM”,”GN”] against the test data 
 
 

Correctness of the discovered frequent patterns can be confirmed through the use of 
“findSupOf” function to predict the probable area of a gene in the test data set. Figure 10 
shows the confirmation of the pattern [“AM”,”GN”], which is one of the discovered 
frequent patterns of a class intron/exon, through the search and comparison of this pattern 
against the whole test set. We found that this pattern matched 41 sub-patterns in the class 
none, 149 sub-patterns in the class exon/intron, and 278 sub-patterns in the class 
intron/exon. Based on the majority matching, we thus conclude that the discovered pattern 
[“AM”,”GN”] correctly represents the top frequent patterns of the class intron/exon. 

For completeness confirmation, we compared the patterns discovered from our 
approximate method with those obtained from the traditional method that does not apply 
the density approximation and sampling technique. With varied percentages of minimum 
support value, our approximate method can discover patterns very close to the traditional 
method. The results are summarized in table 1.
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Table 1. Comparative results of number of patterns discovered from our approximate method with 
those discovered from traditional method. 

 

 
Minimum 
support 

Traditional pattern discovery 
method 

Approximate method  
#Matched 
patterns  

# 1- 
item 

 

# 2- 
item 

 

# 3- 
item 

 

# 4- 
item 

 

# 1- 
item 

 

# 2- 
item 

 

# 3- 
item 

 

# 4- 
item 

 

Class = “none” 

50% 0 0 0 0 0 0 0 0 0 
45% 0 0 0 0 0 0 0 0 0 
40% 0 0 0 0 0 0 0 0 0 
35% 0 0 0 0 0 0 0 0 0 
30% 1 0 0 0 1 0 0 0 1 
25% 117 0 0 0 111 0 0 0 111 

 

Class = “exon/intron” 

85% 3 2 0 0 3 2 0 0 5 
80% 4 5 2 0 4 5 2 0 11 
75% 4 5 2 0 4 5 2 0 11 
70% 4 6 3 0 4 6 3 0 13 
65% 5 8 5 1 5 8 5 1 19 
60% 5 9 7 2 5 8 5 1 19 

 

Class = “intron/exon” 

85% 2 1 0 0 2 1 0 0 3 
80% 3 3 1 0 3 3 1 0 7 
75% 3 3 1 0 3 3 1 0 7 
70% 3 3 1 0 3 3 1 0 7 
65% 3 3 1 0 3 3 1 0 7 
60% 3 3 1 0 3 3 1 0 7 

 

 
 

Table 2. Averaging summary of matched patterns against the test data. 
 

 
Class 

Matched patterns 
(traditional method) 

Matched patterns 
(approximatie 

method) 

Difference 
(traditional vs 
approximate) 

 

2-item 
patterns 

 

3-item 
patterns 

 

2-item 
patterns 

 

3-item 
patterns 

 

2-item 
patterns 

 

3-item 
patterns 

 

none 
 

-- 
 

-- 
 

-- 
 

-- 
 

-- 
 

-- 
 

exon/intron 
 

91.24% 
 

84.35% 
 

90.98% 
 

83.27% 
 

0.26 
 

1.08 
 

intron/exon 
 

90.11% 
 

87.62% 
 

90.09% 
 

86.89% 
 

0.02 
 

0.73 

 

 
 

The comparative results shown in table 1 have been performed on the training data set. 
When matching the discovered patterns against the DNA patterns in the test data set, we 
found that the difference of patterns matched by our approximate method to the ones that 
matched by traditional method is only 0.52% (averaging from the difference values: 0.26, 
1.08, 0.02, 0.73). We therefore conclude from this empirical study that the discovery of 
frequent patterns from randomly selected representatives from a data stream yields the 
patterns as complete and accurate as the standard method that finds patterns from the whole 
large data set.
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5.  Conclusions 
 

Frequent pattern discovery is an essential operation for association analysis. The 
discovery process concerns an automatic extraction of interesting patterns and correlations from 
a large database. These patterns can reveal implicit relationships among set of objects (or items) 
that lead to the generation of association rules to be used for decision support, financial forecast, 
medical diagnosis, and many other applications. Current studies in association rule mining 
concentrate on how to effectively find all objects frequently co-occurring. Given m objects, 
there are as much as 2m  frequent patterns to consider. Frequent pattern discovery is thus a 
computationally expensive problem. For the case of data streaming, this problem is even harder 
because a continuously generated nature of stream does not allow a revisit on each data element, 
but the discovery process must produce results in a reasonable short period of time. 

With such a strict requirement, we therefore propose an approximate approach to tackle 
the frequent pattern discovery over continuous stream problem. Our approximate algorithm is 
intended to be a pre-processing step prior to the discovery process. We propose a stochastic 
method to get a good guess of the stream characteristics, and then draw a set of representatives 
from the incoming stream. These representatives are subsequently used in the process of 
frequent pattern mining. Our design had been implemented with the functional programming 
paradigm and the experimental results confirm the efficiency and reliability of our method. For 
a massive database, parallel method is a solution for the scalability problem. That is the main 
direction of our future research. 
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