COSMIC FPA CALCULATOR FOR MOBILE APPLICATION
DEVELOPMENT COST BASED ON UNITY3D GAME
ENGINE

Nur Atigah Sia Abdullah, Nur Ida Aniza Rusli

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA
40450 Shah Alam, Selangor, Malaysia
atigah@tmsk.uitm.edu.my, idaaniza@gmail.com

Abstract

The emergence technology and popularity of mobile game application has led to higher
demands in producing more colorful game environment, interactive design and selecting
targeted platforms. To fulfil these requirements, mobile game engine; a framework to
create mobile game application should provide greater complexity and parameters to be
added in the mobile game properties. Thus makes the effort costing of mobile application
development difficult to be estimate accurately. Therefore, these mobile game
requirements is a new conceptual of software that still need to be tested properly to
existing estimation models as these estimation models are invented before the emergence
of mobile application requirements. Hence, the motivation is to adapt COSMIC
Functional Size Measurement (COSMIC FSM) for sizing the mobile game application
development as it is one of the estimation models suitable to sizing embedded software
and real-time system. This research use Unity3D game engine as the platform to
represent the mobile game requirements. These requirements are illustrated in the form
of component diagrams and class diagrams to order to maintain and control the
behavior of Unity3D features. The functional processes from component diagrams and
class diagrams are captured to be used later in the sizing process using COSMIC FSM
from the mapping between UML based-COSMIC FSM rules and measurement. A tool,
COSMIC FPA Calculator for Mobile Application is developed to demonstrate the
COSMIC FSM counting process for mobile game application costing.

Keywords: Software Measurement, Software Effort Estimation, COSMIC Functional Size
Measurement, UML, Mobile game application

1. Introduction

In general, software cost estimation involves the measurement of project properties
such as software, hardware and travel costing. However, most of estimation of software
costing is dominantly using effort estimation where it can be converted directly to the project
duration and cost together (Leung et al., 2002). Effort cost estimation process the number of
outcome produces and divides with number person per months required to the development of
the software project. These two effort costing component usually can be performed in the
term of size-related metric or function related metric to measure.

Size-related metric take the size of output from the software project to be used in
measurement by performing the line of delivered source code, number of delivered object
code instruction or the number of pages of system documentation. Line of source code per
programmer-month (LOC/pm) is a well-kwon technique in this category, where the
estimation is conducted by counting the total number of lines of source code and divides it by
the amount of duration to complete the project. This main area of research focus in function-
related metric, valued the cost estimation using functionality of delivered system.

This function-related metric has successful in estimates the software size from the
software requirements or business models (Lind et al., 2011; Uemura et al., 1999). Functional
Size Measurement (FSM) is one of promising for measuring functionality delivered system.
The FSM method was originally proposed by Albrecht Function Point to size the project from
the five elements of input, output, inquiries, internal and external files.

Going through the evolution and to improve Albrecht Function Point method, FSM has
provide users with several FSM technique such as International Function Point User’s Group
of Function Point Analysis (ISO/IEC 20926, 2003), Mk 11 Method of Function Point Analysis
(ISO/IEC 20968, 2002), NESMA Function Point Analysis (ISO/IEC 24570), COSMIC
Functional Size Measurement Method (ISO/IEC 19761, 2003) and FiSMA Functional Size
Measurement (ISO/IEC 29881, 2008) to cater different scenario of software development
(Meli et al., 1999).

This research adapts COSMIC FSM for sizing the mobile game application is one of
the evolutions in FPA that successfully estimate for embedded software and real-time system
(Soubra et al., 2011; Lind et al., 2009). The rules and measurement of COSMIC FSM are
utilized to be mapped with this new gaming context characteristics and requirements.

Gaming is one of entertainment areas that are increasing in popularity. With the
emerging market, game platform has witnessed the game transformation from the game
machines, video games, PC games to mobile application (Herman et al., 2002). The emerging
innovations of 3D technology along with wider, faster and more mobile internet accessibility
are expected to give a strong gaming competition in the market. The process of game
development requires developers to have a good idea of what component that should be used
for the development and specific tasks should be performed for user satisfaction. Since game
development involves a long code of programs, the game engine is very useful to organize a
group of program code that perform the task according to the requirement. The game engine
is a system designed for the creation and development of the game. It is able to simplify the
design process and handles or maintains the whole process of development of the game
application (Gregory et al., 2009; Abdullah et al.,2013; Abdullah et al., 2014).

There are many game engines that are available in the market. This study focused on
five game engines as the platform for the mobile game application development. Unity 3D,
ShiVa 3D, Irrlicht 3D Engine, Reality Factory and Panda3D were chosen to be compared and
evaluated. These game engines are chosen because of open source and provide sufficient
features of the game engine.

This paper is structured as follows: Section 2 reviews the mobile game engine; Section
3 contains a research framework for this research; Section 4 discusses the UML presentation
of Unity3D; Section 5 shows the mapping process between UML modelling and COSMIC
FSM; Section 6 summarizes the COSMIC FSM evaluation for Unity3D. Finally Section 7
describes some conclusion.

2. Methods

This section presents the study on mobile game requirements through the features
provided by game engine. The study is important as game engine executes numerous
components as a platform to deliver complex functionalities in the game environment. Game
engine generally intended to be used for a particular type of game; this study therefore
provides an overview of five game engines in order to explore the possibility these
functionalities able to be included in estimation process using COSMIC FSM. Unity3D,
ShiVa Engine, Irrlicht Engine, Reality Factory and Reality Factory are chosen for further
review on the structure and functionality offered in each game engine.

Unity3D is an ecosystem game development developed by Unity Technologies (Unity
Technologies, 2015). This game engine provides a service to import 2D and 3D game content
to the game scene with the various optional features to use such as scripting using Java
programming language, tools and 3D editors especially for Windows and Mac operating
system.

ShiVa Engine is a game engine that supports more than 21 features to games in
platforms such as Windows, Linux and Mac OS (ShiVa Engine, 2015). Developed by
StoneTrip, this game engine provides features such as animation editor, ambience editor and
material editor to be implemented in devices such as PCs, Mac and Mobile Phone.
Implemented in C++ programming language; ShiVa Engine also compatible using plugin
such as Cinema 4D and Maya Blender for animation and graphical design. Irrlicht Engine is a
3D game engine that designed by Nikolaus Gebhardt (Irrlicht Engine, 2015). Irrlicht Engine is
written in C++ and VB.NET provides the elements like scene editor, lightmap generator and
indoor/outdoor technology to be added in the game. Irrlicht Engine also provides irrEdit and
GUI editor to customize the game environment.

Next is Reality Factory. Reality Factory simplifies the creation of the game application
by using C++ programming language (Reality Factory, 2015). Developed by Gekido Design
Group, this game engine uses Genesis3D to render the real-time game environment with
advanced features such as pathpoint engine, camera controls and physic/dynamic
shadows.Lastly, Reality Factory is a game engine that renders the game environment in
Python and C++ programming language (Panda 3D, 2015). This game engine offers features
such as native DirectGUI system, 3D Studio Max and Maya model through plug-in and also
OpenAL audio engine for game developers. The features of mentioned game engines will be
evaluated using Petridis Methodology in the next section.

A. Petridis Methodology for Comparing Game Engine

This section describes the detail process of selecting game engine which can be used as
a benchmark for the requirement of mobile game application. The selection of game engine
is carried out based on the comparison criteria proposed by Petridis methodology. The six
criteria in this methodology; fidelity, composability, accessibility, networking and
heterogeneity as shown in Table 1 reflects the architecture of the game engine and manage to
provide adequate information to be used in evaluation of game engine.

The concept of fidelity is defined as the bases to visualize the knowledge learnt in the
real world and to be transformed to the game environment. As the representation of features
such as narrative, depth of visualization and characters’ behaviour, Petridis et al., (2010)
divides this fidelity into audio-visual fidelity and function fidelity to make a clear distinction
of features to be used in the illustration of the game. Audio-visual fidelity includes features
such as rendering, animation, sound and effect meanwhile functional fidelity takes the feature
such as scripting, Al technique and physics to be grouped together.

Composability is defines as the feature that utilize reusability concept to create game
application using game engine. It also evaluates the efficiency element in the game engine to
provide services such as import and export via data or sources such as 3ds, Maya and CAD.
Using algorithm for example manage to provide an automation convergence between formats
and toolkits in game development process. Accessibility allows game engine to provide
support system by given information that can be retrieved by game developer including
learning curve, partial source code and licensing documentation. Providing the knowledge
about the game engine is useful for developers to design the game application through user
interface based upon the requirement.

Table 1. Criteria for Comparing Game Engines.

Criteria Features
Audio Visual Rendering
Fidelity —
Animation
Sound
Functional Fidelity Scripting
Supported Al Technique
Physics
Composability Import / Export Content
Developer Toolkits
Accessibility Learning Curve
Documentation and Support
Licensing
Cost
Networking Client Server / Peer-to-peer
Heterogeneity Multiplatform Support

Meanwhile, networking is used to support the game application in a larger scale by
enable game application to have multiplayer connected and interacts through servers. Client
server and peer-to-peer manage to increase the popularity and provide a long term playing
game. Lastly heterogeneity is concerns on the element to deploy the game on specific devices
or software. This enables the game to be released in application such as GPS, simulator or
mobile phones.

B. Comparison of Selected Game Engines

As the objective to estimate the functionality of mobile game, Audio Visual, Functional
Fidelity and Networking are going to be described in detail for the comparison process. These
chosen criteria are appropriate features in the game engine architecture can be mapped to
COSMIC rules and measurement. Composability, Accessibility, and Heterogeneity are
excluded as these criteria do not have the required functionality to estimates. This paper
adapts Petridis’s methodology to compare Unity3D, ShiVa Engine, Irrlicht3D Engine, Reality
Factory and Panda3D. It is shown in Table 2 and Table 3.

Table 2 shows Unity3D, ShiVa Engine and Reality Factory provide various features for
audio-visual fidelity. These three game engines support elements such as texturing, lighting,
shadows, special effect, animation and sounds. This assessment shows that Unity3D, ShiVa
Engine and Reality Factory are the game engines that are able to support the technologies
used for computer graphics.

Table 3 shows the comparison of five game engines in functional and networking
fidelity criteria. Results shows that Unity3D and ShiVa Engine offer similar features. Both
game engines support scripts, path finding, basic physics, collision detection, rigid body,
vehicle physic and networking capabilities for 3D game.

From the three criteria, the Unity3D and ShiVVA game engine offered similar features in
terms of functionality, networking and audio-visual fidelity. This two game engine will be a
benchmark of the game engine to be used for further estimation using COSMIC FSM as both
game engines has sufficient features used by common mobile application and more
comprehensive to be used in a case study for mobile application development estimation.
Moreover, both of game engines also support multiple platforms including iOS, Windows
Phone and Android.

Table 2. Comparison of Game Engines in Audio-Visual Fidelity.

Audio- Unity3D ShiVa Engine | Irrlicht Engine Reality Panda3D
Visual Factory
Fidelity
Basic Basic Basic Basic Basic
> Bummapping | Bumpmapping | Multi- Multi- Animated
£ Procedural Multi- texturing texturing texture
g texturing Bumpmapping | Bummapping | Pointer
2 Mipmapping Mipmapping Mipmaping 3D texture
Projected Project
Procedural
o | Per-vertex Per-vertex Per-vertex Per-vertex Per-vertex
S Per-pixel Per-pixel Per-pixel Per-pixel Per-pixel
S | Lightmapping | Lightmapping | Lightmapping | Lightmapping | Lightmapping
|
o " Projected Shadow Shadow Shadow Not applicable
% g Blob sh_adows mapping mapping mapping
= g Dynamic-
2 &S | shadows
Environment- | Environment- | Skeletal- Keyframe- Skeletal-
mapping mapping animation animation animation
" Lens-flare Lens-flare Animation- Skeletal-
© Bill-boarding Bill-boarding | blending animation
E Particle Particle Morphing Animation-
= Motion Motion blending
S Blur Blur
& | Sky Sky
Water Water
Mirror Mirror, Fire,
Fog, Weather
Forward- Forward- Skeletal- Keyframe- Skeletal-
kinematics kinematics animation animation animation
- Keyframe Keyframe Animation- Skeletal-
2 Animation- Animation- blending animation
g skeletal skeletal Morphing Animation-
'5:_2 Animation Animation blending
Animation- Animation-
blending blending
Morphing
2D Sound 2D Sound Not applicable | 3D Sound OpenAL-audio
3D Sound 3D Sound engine
=) Streaming Streaming FMOD-audio
c .
3 Sound Sound engine
n Miles-audio
engine

Table 3. Comparison of Game Engines in Functional Fidelity and Networking Fidelity.

Functional and Networking Unity3D ShiVa Irrlicht Reality Panda3D
Fidelity Engine Engine Factory
Scripting Script Yes Yes No Yes Yes
Object Model No No No No No
Support Al Path Finding Yes Yes No No Yes
Technique Decision No Yes No No No
Making
Physic Basic Physics Yes Yes No Yes No
Collision Yes Yes Yes Yes No
Detection
Rigid Body Yes Yes No Yes No
Vehicle Yes Yes No No No
Physics
Networking Client-Server Yes Yes No No Yes
Peer-to-Peer No No No Yes No

However, Unity3D is chosen for further estimation because it is one of the most widely
referred game engines in most of the research and mobile development. Unity3D also has
released 80 mobile games compared to ShiVa game engine has released 28 mobile game
according DevMaster (DevMaster, 2015) and ModDB (ModDB, 2015) game engine
databases. Unity3D also has a large community and provides many tutorials to be learned.

3. Research Framework

This section describes the conceptual framework of this research. The detail procedure
and method to collect data is shown in Figure 1. The research framework is consists five
phases; preliminary study, analysis of literature, UML modelling and mapping, system design
and implementation, and also finding phase manage to help the structural process for
developing the estimation tool for mobile game application. This framework is a good
approach for identify the research objectives, purposes and data collection to be used in the
measurement. The detail steps for each stage for Unity3D UML-COSMIC FSM are describes
in following section.

a. Preliminary Phase

The work begins with collecting information from journals and articles to allow this
search to have strong foundation in the domain area. This phase also performs the analysis of
software cost estimation, functional size measurement and mobile game application
development and framework to enable this study associate these concept for further research.

b. Systematic Review

The detail rules and procedure of COSMIC FSM are analysed to be used later in the
measurement process. This step also contains with a comparison characteristic of selected
game engine. Five open source game engine; Unity3D, ShiVa3D, Irrlicht3D Engine, Reality
Factory and Panda3D were compared using Petridis methodology in order to obtain suitable
game engine to serves as data collection or a requirement for mobile application development
for this research. The concept of UML modelling also is revised to provide a better
understanding of mapping and calculation process between UML based and COSMIC FSM.

Phase Activity Outcome
Review of:
1. Software metrics L R h orob
- 2. Software metrics for mobile - nesearch problem
Theoretical application 2. Research objecfuves
Study 3. Software Cost Estimation > 3 Researc? qugstlons
4. Function Point Analysis (FPA) 4. Scope of study
5. Mobile game application |
6. Game engine |
e |
v - Detail characteristics of: L Eggsl\ﬂg Egl&mat'on e
Systematic 1. Detail of COSMIC FSM :
Review measurements, steps and N - SOTPSSS%TI%NSS !
] ni , ShiVa3D,
rules with COSMIC-UML Irrlic¥1t3D Engine
2. Game engine architecture Reality Factory and
< Panda3D
Y UML tati f Unity 3D
UML game ;r;riiseen ation ot ity 1. Component diagram and
Modelling and : class diagram of Unity3D
. M Ml .
Mapping U&pflng COSMIC conceptand —> 2. Mapping table of
e Identification of COSMIC 3 &28'\;:(:;;)':2'3‘0]:
concept with mobile game : Cogll)\/ll% mobile game
e ldentification of functional DR bl
process and data movement
e Calculation of COSMIC I
— — — — o — d
A4 SDLC Waterfall Methodology 1. System objectives
System Design e Requirement 2. Hardware and software
and e Analysis —_— requirements
Development e System Design 3. UML model for the tool
. |mp|ementation and 4. Testing with various
Testing UML game model
v - - - ————— -
Findings COSMIC FPA Calculator 1. Function point size
for Mobile App T2 2. Costestimation

Figure 1. Research framework

c. UML Representation and Mapping

This phase is composed of UML representation of the Unity3D game engine. The UML
model of Unity3D is constructed to presenting the assets and the flow of data or components
in Unity3D. The mapping rules between COSMIC concept and UML are finalized to be used
as a guideline for calculating COSMIC function point (CFP) value for mobile application.
This phase continues with the process of obtaining the CFP value of Unity3D by mapping the
UML modelling of Unity3D game engine to COSMIC rules. Mapping COSMIC rules and
UML model of the Unity3D game engine will determine the elements that will distribute to
COSMIC Entry, Read, Write or Exit data movements before it can be aggregated to numbers.

d. Systematic Design and Development

This phase involves the process of gathering the requirements to develop a calculator for
mobile application using COSMIC function point. The components are identified to be used
as the medium to implement the software measurement. The components required for the
development of calculator are listed below.

- Checkbox. This component allow user to tick several inputs data entry such as camera,
audio and particle system to process at a time.

- Tabbed panes. The calculation provides 28 checkboxes to represent Unity3D
components. Tabbed panes is suitable for organize these 28 checkboxes by splitting these
checkboxes into two tabs. Although it is distributed in two tabs, but the function of
tabbed panes allows the values of checkboxes pointed in a single reference.

- Text fields. Text fields allow user to continue the costing process by insert the amount of
duration to develop the project and salary per one programmer.

- Table. Table is used to display the detail information from the data entry, including the
message and data movements of the mobile game component.

The design phase is illustrated using component diagrams and class diagram to represent
the data of the calculator. From the UML modelling, the calculator allows the activities such
as selection of data entry, COSMIC function point calculation, and effort costing for the
mobile game application project.

e. Findings

The outcome of the study explains the elements in the UML representation of Unity3D
game engine able to capture the functional process of COSMIC FSM and categorized into the
COSMIC data elements; Read, Write, Entry or Exit for the sizing process. The mapping
process allows this research to obtain the function point based on the UML concept and
COSMIC FSM rules and measurement.

4. The UML Modelling of Unity3D

This section describes the function point calculation process based on Unity3D game
engine environment. The process begins with the illustration of UML model of Unity3D to
represent the requirements for mobile game application development. This reverse engineering
process leads to creation of UML modelling based on Unity3D documentation. This UML
modelling divides into several groups of component and classes.

Figure 2 shows the portion of component diagram named Core. This Core component is
consist of three class diagram namely as Object, Component and GameObject class diagram.

The elements in the GameObject and Components are inherited from the Object class. The
element in Object associates with classes in other components. This Object class is crucial to
create, use or destroy the model for current scene.

Core
= Asset
Object
GameObject fideFlegs
name

activelnHierarchy
activeSelf GetinstancelD
animation ToString —\
audio & Destroy Mg
camera D
collider DontDestroyOnLoad
constantForce FindObjectOfType
guiText FindObjectsOfType
guiTexture Instantiate I
hingeJoint
isStatic ;‘ ‘
layer
light Component
networkView animation
particleEmitter audio
particleSystem camera
ronderer — collider
figidbody constantForce
tag gameObject i

guiText
AddComponent quiTexture
BroadcastMessage hingeJoint
CompareTag light
GetComponent networkView
GetComponentinChildren particleEmitter
GetComponents particleSystem
GetComponentsinChildren renderer
SampleAnimation . i 5y =
Sndiicisass :;gwdbodv o Behaviour | Physic
SendMessageUpwards 4 5
SetActive
CreatePrimitive Broadcastiessage
Find CompareTag
FindGameObjectsWithTag GetComponent
FindWithTag GetComponentinChildren

GetComponents

SendMessage

SendMessageUpwards

[

-

Animation

Effect |

Figure 2. Core component diagram in Unity3D

Behaviour component in Figure 3 is consisting of Behaviour and MonoBehaviour class
diagram. This component provides the optional to enable and disable object modelling in
Obiject class diagram in Core component. Behaviour component also associates with elements
with Rendering, Physic, Effect, and Animation component. Apart of enable and disable, this
component also uses as bases for derived scripts.

Asset

Physic
Rendering
Behaviour |
Core —
o Behaviour
-
enabled FH
e disabled
useGUILayout
Cancellinvoke
Invoke
InvokeRepeating
Isinvoking
Mesh StartCoroutine
StopAllCaroutines
StopCoroutine
Animation

Figure 3. Behaviour component diagram in Unity3D

Animation component consists of Animation, Animation State, AnimationEvent,
AnimationClip, AnimationCurve and Keyframe class diagrams. Allow the modification of
game speed, time and scripting to play the game animation, the detail Animation component
diagram in Unity3D is shown in Figure 4.

Behaviour

Z

Animation

Animation State Animation

blendMode animatePhysics AnimationClip
clip clip keys
cullingType length

layer isPlaying postWwrapMode
length localBounds preWrapMode
name playAutomatically this{int]
normalizedSpeed
normalizedTime

this
wrapMode
speed
time AddClip
weight Blend

AnimationCurve

wrapMode CrossFade
AddMixingTranform ggéﬁngeQ;"eued frameRate
RemoveMixingTransform i length
IsPlaying localBounds
/|\ Play wrapMode
PlayQueued
AnimationEvent Rempveclnp
Rewind
animationState Sample
floatParameter Stop
functionName SynclLayer Keyvivame
intParameter e —
messageOptions outTangent
objectReferenceParameter time
stringParameter s
time

Figure 4. Animation component diagram in Unity3D

Meanwhile, Figure 5 shows the details of Physic component. Physic component consists
of SphereCollider, Box, WheelCollider, MeshCollider, Capsule, Terrain, Collider,
RigidBody, ConstantForce and CharacterController class. This Physic component provides a
technology for collider and continuous forces between objects. The Collider and RigidBody
class are the main classes that relate all mentioned class to the Behaviour class in Behaviour
component.

Behaviour

[Physic |
SphereCollider Box
center center
radius size R RigidBody
+collider physics
angularDrag
angularVelocity
centerOfMlass
collisionDetectionMode
constraints
detectCollisions
. drag
Wheslcolder freezeRotation
brakeTorque = inertiaTensor
center Colider Physi inertiaTensorRotation
sics
forwardFriction attachedRigidbody Dounce:'nreshold interpolation
i bounds i i
:;s]g;«;unded it gravity . I;};?:mam
motorTorque —>{isTrigger maxangulanvelocity maxAngularVelocity
adine material minPenetrationForPenalty position
om sharedMaterial sleepAngularvelocity rotation
" e s : sleepVelocity .
i e e sonerterationCount e LAl
aycas
suspensionDistance CapsuleCast solveriterationCount
suspensionSpring CapsuleCastAll useConeFriction
GetGroundHit CheckCapsule useGravity
CheckSphere velocity
GetignoreLayerCollision worldCenterOfilass
ignorstollislon: AddExplosionForce
IgnoreLayerCollision
tihacast AddForce
OverlapSphere AddForceAtPosition
- bl iig AddRelativeForce
MashCollder. Raycasv\ll AddRelativeTorque
convey Jormain Sp%erecast scdlordue
sharedMesh terrainData ClosestPointOnBounds
5 SphereCastAll 3 ¢
smoothSphereCollisios GetPointVelocity
GetRelativePointVelocity
IsSleeping
CharacterController Movel octtion
Capsule MoveRotation
. ConstantForce cantas SetDensity
center ioi
et force collisionFlags Sleep
e relativeForce detectCollisions SweepTest
radigus relativeTorque height SweepTestAll
torque isGrounded WakeUp
radius
slopeLimit
stepOffset
velocity
Move
SimpleMove

Figure 5. Physic component diagram in Unity3D

Rendering component is consists of Camera, LightProbeGroup and LOD that are
composed to the Component class in Core component. The Behaviour class in Behaviour
component is composed of GUIElement, Light, GUILayer , OcclusionPortal, SkyBox and
OcclusionArea class to allow player to view the game scene, texturing images and also
integrates the 2D and 3D elements. Figure 6 shows the Rendering component diagram in
Unity3D.

0.*
&
Behaviour
+camera +lod
Rendering +lightprobe +occlusionarea
L OcclusionArea
Camera
> LoD center
L i enabled Hocclusionportal il
CopyFrom probekasiions localReferencePoint lodCount
Render size
RenderToCubemap
RenderWithShader RecalculateBounds +skybgx
ResetAspect SetLODS
ResetProjectionMatrix
ResetReplacementShader +gtilayer
ResetWorldToCameraMatrix +ight
ScreenPointToRay
ScreenToViewportPoint
ScreenToWorldPoint
SetReplacementShader OcclusionPortal
SetTargetBuffers GUIText GUiElement open
ViewportPointToRay
ViewportToScreenPoint aligoment GetScreenRect
ViewportToWorldPoint Anchior HitTest
WorldToScreenPoint Calor
WorldToViewportPoint font
fontSize SkyBox
'.OMSME - material
material GUITexture GUlLayer
pixelOffset border
richText
tahokes E?xflrlnset BTt
Jit texture
Light
alreadyLightmapped
areaSize
color
cookie
cullingMask
flare
intensity
range
renderMode
shadowBias
shadows
shadowSoftness
shadowSoftnessFade shadowStrength
spotAngle
type

Figure 6. Rendering component diagram in Unity3D

Figure 7 shows the class diagrams that are embedded in Mesh component. Mesh
component consists of Mesh, MeshFilter, SkinnedMesh and TextMesh class to allow
modification in mesh scripts and filter all mesh components through association with
Component and GameObiject class in Core component. Figure 8 incorporates set of classes for
Effect component. This Effect component is consists of ParticleSystem class, LineRenderer
class and TrainRenderer class that associate with Component class in Core component.
Meanwhile Projector and LensFlare class are connects to the attributes in Behaviour
component. Lastly, Figure 9 shows details component diagram for the Asset. It consists
AudioClip, Texture, CubeMap and TextAsset that connects the attributes in Object class in
Core component. Texture3D, Texture2D , MovieTexture and RenderTexture are associated
with TextureClass diagram.

Object

2

Mesh

+mesh]

Component

Mesh

bindposes
boneWeighis
pounds
colors
caolors32
isReadable
normals
subMeshCount
tangents
triangles

uv

uve
vertexCount
vertices

Clear
CombineMeshes
Getlindices
GetTopology
GetTriangles
MarkDynamic
Optimize
RecalculateBounds

SetTriangles

RecalculateMormals Setindices

4+ H
+textmesh
+meshfijter
TextMesh
alignment
anchor
i characterSize
Hekinnedmesh | oo
font
= fontSize
MeshFilter fontStyle
mesh lineSpacing
sharedMesh offset?
richText
tabSize
text
SkinnedMesh
bones
localBounds
quality
sharedMesh
updateWhenOffscreen
BakeMesh

Figure 7. Mesh component diagram in Unity3D

Component

+particlesystem

Effect

+trailrenderer

Behaviour

Particle System

duration
emissionRate
enableEmission
gravityModifier
isPaused
isPlaying
isStopped

loop
particleCount
playbackSpeed
playOnAwake
randomSeed
safeCollisionEventSize
simulationSpace
startColor
startDelay
startlifetime
startRotation
startSize
startSpeed

time

+linerenderer

+lensflare

TrailRenderer

autodestruct
endWidth
startWidth
time

+projector

LensFlare

brightness

color

LineRenderer

useWorldSpace

flare

SetColors
SetPosition
SetVertexCount
SetWidth

Projector

Clear

Emit
GetCollisionEvents
GetParticles

IsAlive

Pause

Play

SetParticles
Stimulate

Stop

aspectRatio
farClipPlane
fieldOfWiew
ignoreLayers
material
nearClipPlane
orthographic
orthographicSize
orthoGraphicSize

Figure 8. Effect component diagram in Unity3D

Object
Asset +texture +textasset
+audioclip
AudioClip TextAsset
Texture
channels - bytes
frequency anisoLevel —iaxt
isReadyToPlay filterMode
length height
samples mjpfvlapBias
bt x:gthMode
SetData D
GetTexturelD Cubemap
GetTexturePtr format
ProceduralTexture Apply
GetPixel
GetProceduralOutputType gz:;'::: 3
SetPixels
SmoothEdges
Texture3D
depth MovieTexture RenderTexture
format Texture2D audioClip colorBuffer
duration
Apply format isPlaying e s
GetPixels mipmapCount isReadyToPI epthBuffer)
) IsReadyioriay enableRandomWrite
SetPixels |
Apply oop format
Compress Pause height
EncodeToPNG Play isCubemap
GetPixel Stop isVolume
GetPixelBilinear sRGB
GetPixels useMipMap
GetPixels32 volumeDepth
Loadimage width
PackTextures Create
ReagFﬁxe!s DiscardContents
Re;;;e | IsCreated
SetPixel MarkRestoreExpected
SetPixels Release
Setfixels32 SetGlobalShaderProperty

Figure 9. Asset component diagram in Unity3D

The following section presents the mapping procedure between UML modelling of
Unity3D and COSMIC FSM. The adaption of COSMIC FSM in UML modelling is crucial
for the identification of functional process and also the data movement which these element
capable to be used later in the estimation process.

5. UML Modelling and COSMIC FSM Mapping

Table 4 presents the mapping rules between COSMIC concept, and UML concept,
diagram and element. Adaptation from Lavazza et al., (2009) proposal, this mapping is
important because it helps to identify the functional process and data movement in Unity 3D.
Component diagram and class diagram are used to classify the data movements that are
included in the functional requirement model. COSMIC FSM functional process categorized
the data movements in entry, exit, read or write data movement using the COSMIC FSM-
UML based rules due to the availability of component diagram and class diagram to sizing the
functional process from the structured environment within the component diagram, class
diagram, the boundary and its interaction as a whole.

Table 4. Mapping rules between COSMIC concept and the UML
(Source: Lavazza et al., 2009)

COSMIC UML concept UML diagram UML element
concept
Functional The functional Use case Use case
Process requirements contained Sequence Sequence interaction
in the component. Must
reside completely within
one component
User Surrounding component | Use case Agent directly connected with a use
case
Component External component directly
connected with the system.
Boundary Component boundary Use case Boundary of the subject
Component Boundary of the system component
Entry data Operation in required Sequence Message from external component
movement interface Component to the system
Class
Exit data Operation in provided Sequence Message from the system to
movement interface Component external component
Class
Read/Write Parameter with direction | Sequence Message involving persistent data
data =in/out Component from system to instance of class
movement Class within the system
Triggering Component for Component Operation in interface realized by
event distinguish it from Class the system and invoked
messages spontaneously by an active external
component
Level of Part of categorization Component Class
granularity Class
Level of Part of categorization Component Data that cross boundaries of the
decomposition system, operation of the interfaces
or to parameter of these operations

COSMIC FSM categorized the data movements into entry, exit, read or write from
the operations in component diagram and class diagram. The identification and categorization
of data movement (entry, exit, read or write) in each functional process is according the
message contained in the function. Entry data movement allows the process of bringing the
message from external resources to the system. It is opposites to exit data movement where
the message from the data in the system to the external component. Read or write data
movement is identified by the message involving persistent data from system to instance of
class within the system. Lastly the triggering events also are performed for this process.

6. COSMIC FSM Measurement for Unity3D

All component diagrams are used in the identification of functional process and data
movement in the Unity3D. The measurement to the function point is based on the
classification within the data group in Unity3D. The identification of data movement, either
read, write, entry or exit data movements are basically from the message carried by the
respective functions. Each function might post a message, which is in either category of a

guery message (as read data movement); build connection message (write data movement); a
request message (as entry data movement) or response to the message (exit data movement).

The data movement is illustrated in Table 5 consists of data movement and size of
transaction for Core component, Behaviour component, Physic component, Rendering
component, Animation component, Mesh component, Effect component and Asset
component respectively.

Table 5: Data Movement and Size Of Transaction For Unity3D

Component Process R W E X CFP
Core Object 2 2 2 2 8
Component 3 1 2 1 7
GameObiject 5 2 7 1 15
Behaviour Behaviour 0 0 1 1 2
Mono 0 1 3 3 7
Behaviour
Physic RigidBody 5 2 9 1 17
Collider 0 2 0 0 2
Character 0 2 0 0 2
Controller
Wheel 1 0 0 0 1
Collider
Physics 3 8 0 2 13
Rendering Camera 5 9 0 4 18
LOD 1 1 0 0 2
GUIElement 2 0 0 0 2
GUILayer 1 0 0 0 1
Animation Animation 0 0 1 1 2
State
Animation 3 5 4 1 13
Mesh Mesh 5 5 1 0 11
Skinned 0 1 0 0 1
Mesh
Effect Particle 4 2 4 0 10
System
Line 0 4 0 0 4
Renderer
Asset AudioClip 1 1 0 0 2
Procedural 1 0 0 0 1
Texture
Texture3D 2 1 0 0 3
Texture2D 7 7 0 0 14
Movie 0 3 0 0 3
Texture
Render 1 3 1 1 6
Texture
CubeMap 3 3 0 0 6
Texture 2 0 0 0 2
Total CFP 175

This table consist of Process, Message Sent, Data Movement and COSMIC Function
Point (CFP). The example of Entry data movement is identified from the Object data group

represents the FindObjectOfType from the Object component. One Write data movement is
estimated from the MonoBehaviour data group represents the Islnvoking function in
Behaviour component. The Exit and Entry data movement is identified from the
RenderTexture data group represent as DiscardContents and Create functions respectively.

The Unity3D game engine is estimated have 175 COSMIC Function Point CFP by
adding up all the number of Entry, Exit, and Read and Write data movements. The following
contains the procedure of mapping the COSMIC rules and UML concept for Unity3D:

» Step 1 involves the process of capturing the layers embedded in the software. The
illustration of requirement processes are only considers the software layer as one layer
only. All functional requirements are assumed to be on the same level.

» Step 2 provides the identification of the boundary underlying in the software. The
measurement towards this software boundary is from the interaction among
component diagrams in the Unity3D. The component diagrams serves as the
maintenance of the class diagrams that are embedded in the components.

» Step 3 is the process to capture the functional process in Unity3D from the operations
and interactions between class diagrams.

» Step 4 is the process of the finding the data group from the requirements. This paper
by default assumes all functions in the same class diagram as one data group

A. Prototype

This section presents the estimation tool for mobile game application. The values of
components collected from the Unity3D game engine are aggregated into number as a result
of the mapping process between UML modelling and COSMIC FSM rules and measurement.
Mobile game components and its functional values are then structured into this estimation
tool.

This estimation tool provides a set of package entry to allow users to select component
for the mobile game application development. The Unity3D components are listed in two
packages. Fig 10 shows the list of components including Core, Behaviour, Physic and
Rendering. Meanwhile Animation, Mesh, Effect and Asset component are placed in package
two in Fig 11. The overall effort estimation of mobile game application development can be
further processed based the total function point obtained from the package entry.

[Package One | Package Two | Package One || Package Two |
Core Behaviour Animation Mesh
[] Object [] Behaviour [] Animation [] Mesh
[[] Component [_] Mono Behaviour [] Animation State [] Skinned Mesh
[] Game Object
Physic Rendering Effect Asset
[Collider [] camera [] Particle System [] Texture [] Cube Map
] Physics] LoD [] Line Renderer [] Audio Clip [] Texture 2D
[] Character Controller [] GUI Layer [] Movie Texture [] Texture 3D
[] Rigid Body [_] GUI Element [[] Render Texture
[[] Wheel Collider [[] Procedural Texture

Figure 10. Package One Figure 11. Package Two

Total COSMIC Function Point :
Person | Month

Duration = I'month

| Person Calculation

Person Required

Salary *RM I month

| CostCalculation |
Total Software Cost :RM

Figure 12. Effort Estimation Calculation

When the entire components have been specified, the tool will computes the total
function point in COSMIC function point. The total cost of software project can be obtained
when user enter duration (per month) to complete the project and salary (per month) for one
programmer, as illustrated in Figure 12. The tool effectively supports the estimation for
mobile game application by using function point approach specifically in COSMIC function
point from the utilization of assets in Unity3D.

7. Conclusion

This paper presented COSMIC FSM for sizing the mobile game development. Creation
of mobile game requires complex requirements. Therefore, adaption of game engine
architecture to represent the requirement of mobile game is acceptable to sizing the effort
estimation of mobile game application using COSMIC FSM rules and measurement.
Selection of Unity3D through the evaluation of game engine methodology proposed by
Petridis’s is important to be use as benchmark for mobile game design. Represented in UML
modelling, Unity3D functions are controlled in the component and class diagrams context in
order to maintain the performance of each function. The mapping procedure between UML
modelling and COSMIC FSM rules is crucial to obtain the COSMIC FSM function point of
mobile game application. This paper also demonstrates an estimation tool to help practitioner
to calculate the effort estimation of mobile game application using COSMIC FSM.

Acknowledgement

The authors express appreciation to Research Management Institute (RMI) and Faculty of
Computer and Mathematical Sciences of Universiti Teknologi MARA for sponsoring this
paper.

References

Abdullah, N.AS., Rusli, N.lLA., & Ibrahim, M.F. (2013). A Case Study in COSMIC
Functional Size Measurement: Angry Birds Mobile Application. Proceedings of the IEEE
Conference on Open Systems, 139-144.

Abdullah, N. A. S., Rusli, N. I. A, & lbrahim, M. F. (2014, October). Mobile game size
estimation: COSMIC FSM rules, UML mapping model and Unity3D game engine. In
Open Systems (ICOS), 2014 IEEE Conference on (pp. 42-47). IEEE.

COSMIC-Common Software Measurement International Consortium. (2007). The COSMIC
Functional Size Measurement Method-version 3.0 Measurement Manual (The COSMIC

Implementation ~ Guide for ISO/IEC 19761: 2003). Retrieved from
http://www.cosmicon.com/portal/public/COSMIC%20Method%20v3.0.1%20Me
asurement%20Manual.pdf

DevMaster (2015). Retrieved from http://devmaster.net/.
Gregory, J., Lander, J., & Whiting, M. (2009). Game engine architecture. AK Peters.

Herman, L., Horwitz, J., Kent, S., & Miller, S. (2002). The history of video games.
Gamespot. Retrieved on February, 7, 2002.

Irrlicht Engine (2015). Retrieved from http://irrlicht.sourceforge.net/.
ISO/IEC 19761. (2003). COSMIC Full Function Points Measurement Manual v.2.2.

ISO/IEC 20926. (2003). Software Engineering — IFPUG 4.1 Unadjusted FSM Method —
Counting Practices Manual.

ISO/IEC 20968. (2002). Software engineering - Mk Il Function Point Analysis - Counting
Practices Manual.

ISO/IEC 24570. (2004). Software Engineering-NESMA Functional Size Measurement
Method version 2.1-Definitions and Counting Guidelines for the Application of Function
Point Analysis. International Organization for Standardization, Geneva.

ISO/IEC 29881. (2008). Software Engineering—FiSMA Functional Size Measurement
Method version 1.1, Int’l Organization for Standardization, 2008.

Lavazza, L., & Del Bianco, V. (2009). A case study in COSMIC functional size
measurement: The rice cooker revisited. In Software Process and Product
Measurement (pp. 101-121). Springer Berlin Heidelberg.

Leung, H., & Fan, Z. (2002). Software cost estimation. Handbook of Software
Engineering, Hong Kong Polytechnic University.

Lind, K., Heldal, R., Harutyunyan, T., & Heimdahl, T. (2011, November). CompSize:
Automated size estimation of embedded software components. In Software
Measurement, 2011 Joint Conference of the 21st Int'l Workshop on and 6th Int'l
Conference on Software Process and Product Measurement (IWSM- MENSURA). 86-95.
doi: 10.1109/IWSM-MENSURA.2011.49

Meli, R., & Santillo, L. (1999, October). Function point estimation methods: a
comparative overview. In FESMA (Vol. 99, pp. 6-8).

ModDB (2015). Retrieved from http://www.moddb.com/.

Panda3D (2015). Retrieved from http://www.panda3d.org/.

Petridis, P., Dunwell, 1., de Freitas, S., & Panzoli, D. (2010, March). An engine selection
methodology for high fidelity serious games. In Games and Virtual Worlds for Serious

Applications (VS-GAMES), 2010 Second International Conference on (pp. 27-34). IEEE.

Reality Factory. Retrieved from http://www.realityfactory.info/cms/

http://devmaster.net/
http://irrlicht.sourceforge.net/
http://www.moddb.com/

Soubra, H., Abran, A., Stern, S., & Ramdan-Cherif, A. (2011, November). Design of a
Functional Size Measurement Procedure for Real-Time Embedded Software
Requirements Expressed using the Simulink Model. In Software Measurement,
2011 Joint Conference of the 21st Int'l Workshop on and 6th Int'l Conference on
Software Process and Product Measurement (IWSM-MENSURA) (pp. 76-85). IEEE.

ShiVa Technologies (2015). ShiVa editor. Retrieved from http://www.stonetrip.com/.
Uemura, T., Kusumoto, S., & Inoue, K. (1999). Function point measurement tool for

UML design specification. In Software Metrics Symposium, 1999. Proceedings. Sixth
International (pp. 62-69).

Unity Technologies (2015). Retrieved from http://unity3d.com/.

http://www.stonetrip.com/
http://unity3d.com/

