
Malaysian Journal of Computing, 3 (2): 119–137, 2018

Copyright © UiTM Press

eISSN: 2600-8238 online

119

This open access article is distributed under a Creative Commons Attribution (CC-BY SA) 3.0 license

META-MODELING CONSTRUCTS FOR REQUIREMENTS REUSE

(RR): SOFTWARE REQUIREMENTS PATTERNS, VARIABILITY

AND TRACEABILITY

Badamasi Imam Ya’u1, Azlin Nordin2, and Norsaremah Salleh2

Department of Computer Science

Kulliyyah of Information and Communication Technology (KICT)

International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia
1badamasi.imam@live.iium.edu.my, {2azlinnordin, 3norsaremah}@iium.edu.my

ABSTRACT

Reuse is a fundamental activity, which increases quality and productivity of software products.

Reuse of software artifacts, such as requirements, architectures, and codes can be employed at any

developmental stage of software. However, reuse at a higher level of abstraction, for instance at

requirements level, provides greater benefits in software development than when applied at lower

level of abstraction for example at coding level. To achieve full benefits of reuse, a systematic

approach and appropriate strategy need to be followed. Although several reuse approaches are

reported in the literature, these approaches lack a key strategy to synergize some essential drivers

of reuse, which include reusable structure, variability management (VM) and traceability of

software artifacts. In line with this, we make our contribution in this paper by (1) presenting the

concepts and importance of software requirements patterns (SRP) for reusable structure; (2)

proposing a strategy, which combines three sub-disciplines of Software Engineering (SE) such as

Requirements Engineering (RE), Software Product Line Engineering (SPLE) and Model-driven

Engineering (MDE); (3) proposing a meta-modeling constructs, which include SRP, VM and

traceability and; (4) Relationship amongst the three sub-disciplines of the SE. This is a novel

approach and we believe it can support and guide researchers and practitioners in SE community

to have greater benefits of reuse during software developments.

Keywords: meta-model, Requirements reuse (RR), software requirements patterns (SRP),

traceability, variability modeling (VM)

1. Introduction

It is obvious that reuse is a SE practice, which is central to all software development activities

(Franch, Palomares, Quer, Renault, & De Lazzer, 2010). It can be achieved through a number of

approaches, such as component-based software development (Basha & Moiz, 2012; Ya’u, 2015),

object-oriented and aspect-oriented software development (Nerurkar, Kumar, & Shrivastava, 2010)

among others.

Nevertheless, reuse is not optimized as many software developers opportunistically apply

in the lower abstraction levels for example, at design, runtime and implementation. A research

shows that, when reuse is applied at highest level of abstraction (requirements analysis stage),

which comprises of elicitation, analysis and documentation, all artifacts at subsequent stages related

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

120

to the reusable requirements, such as test case, specification, design and codes are also reused and

hence minimizes substantial effort (Goldin, Matalon-Beck, & Lapid-Maoz, 2010). This indicates

that, reuse of software artifacts at the initial stage of development is far more advantageous than at

any other stage of development (Bakar & Kasirun, 2014). The benefits of reuse is evident,

especially in producing high quality product, perhaps with little modification (Liang, Avgeriou, &

Wang, 2011). Consequently, applying reuse at requirements level can improve the quality of

software, reduce development cost and shorten time to markets (Benitti & Silva, 2013; Chernak,

2012; Goldin & Berry, 2013; Hauksdóttir, Mortensen, & Nielsen, 2013).

SE is viewed as multi-disciplinary field, which connects a number of social and

technological boundaries (Easterbrook, Singer, Storey, & Damian, 2008). It embodies the

development, maintenance and management of quality software through cost-effective ways

(Sjoberg, Dyba, & Jorgensen, 2007). These cost-effective ways may involve reuse of software

artifacts (tangible by-products of software development, such as requirements, use cases, models

among others), thus providing software development solutions and reduction of products time to

markets (Chernak, 2012).

Due to increased demands from customers, there are unpredictable and frequent changes

in businesses, marketplaces and competitors. Therefore, the way products are developed and

projects are executed, also changed since, requirements are changed indefinitely to suit customers’

needs (Gabriel, 1996). Requirements are the model of any system intended to be developed

(Hoffmann, Kühn, Weber, & Bittner, 2004) and therefore provide the specifications of what should

be implemented (Wiegers & Beatty, 2013). Because of the complexity of the increasing changes in

business, requirements should be reused rather than reinvented from scratch (Hauksdóttir et al.,

2013; Zhang, Nummenmaa, Guo, Mai, & Wang, 2011).

Because of this, the aim of this paper is to propose a systematic RR strategy, with the aid

of a meta-model, which represents SRP, VM and traceability. Thus, our contributions are: (1)

integration of SRP, VM and traceability in a meta-model (2) theoretically linking the concept of

RE, SPLE and MDE to enhance systematic reuse.

It is discovered that, the reuse of software requirements is beneficial to developers,

particularly during requirements elicitation, analysis, validation and documentation phases

(Srivastava, 2013). In a previous research (Ya'u, Nordin, & Salleh, 2016a), we reported a number

of approaches to RR, which include domain-specific, pattern-based, ontology-based and general

approaches. Pattern-based are recognized in providing consistent and reusable structure for RR

(Benitti & Silva, 2013; Franch et al., 2010). To promote RR, we propose the adoption of a meta-

model strategy, which binds SRP, VM and traceability.

1.1. Motivation

Many domains such as insurance, banking, health, airlines, education, automotive and other

consumer electronics deal with many sets of requirements within the same application domain or

product families. Customers and end users are now in haste looking for latest, fast, and efficient

interfaces, applications and products that can cater their social needs. For example, in software

product families, utilization of family assets to produce subsequent products is emphasized. That

is, no need for development from scratch; instead, new products are derived from the family assets

(e.g. requirements) with little modification.

In this way, RR gives opportunity to build products in a consistent fashion with reduced

time and frequency of error occurrences (Wiegers, 2005). RR therefore, has the potential to reduce

the cost, effort and time to markets (Benitti & Silva, 2013; Chernak, 2012; Goldin & Berry, 2013;

Hauksdóttir et al., 2013). This is due to its flexibility as it can be applied at any phase of RE lifecycle

for instance, from requirements elicitation to documentation. It is presumed that the earlier reuse is

applied, the greater benefit of reuse is realized (Benitti & Silva, 2013; Goldin et al., 2010; Velasco,

Valencia-García, Fernández-Breis, & Toval, 2009). Therefore, the benefit of RR at phase affects

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

121

the subsequent phases of the RE lifecycle (Bakar & Kasirun, 2014; Benitti & Silva, 2013; Goldin

et al., 2010). To illustrate this statement, reuse of requirements in practice, involves reuse of other

associated activities and knowledge, which include reuse of test cases, designs and analysis

(Monzon, 2008). In addition, an increase in dependability, a reduction of risk and an increase in

quality are also benefited from RR (Sandhu, Aashima, Kakkar, & Sharma, 2010).

The remainder of this paper is as follows: we discuss the importance of choosing an SRP

for achieving RR in Section 2; Section 3 presents meta-model approaches for reuse; we discuss our

proposed meta-modeling constructs in Section 4; relationships amongst RE, MDE and SPLE are

presented in Section 5; Section 6 presents the discussion; and Section 7 presents the conclusion and

future work of the paper.

2. Software requirements patterns (SRP)

Patterns appear to be prominent among many reuse approaches as each pattern describes a recurring

problem together with the solution of this problem, which is applied over and over again (Franch

et al., 2010). A requirement pattern is defined as a template and guidelines for writing a requirement

(Palomares Bonache, Quer Bosor, Franch Gutiérrez, Guerlain, & Renault, 2012; Palomares, Quer,

Franch, Renault, & Guerlain, 2013; Srivastava, 2013). The templates and the catalogs in which the

requirements patterns are presented ensure a standardized structure for enhancing systematic RR

(Ya'u et al., 2016a). Requirements patterns are described as reuse approach, which is similar to

design pattern that can be applied in requirement specification (Konrad & Cheng, 2002). As such,

SRP offers significant percentage of reuse for both functional and non-functional requirements

(Srivastava, 2013). When SRP is applied in RE, it produces all software requirements related to the

objectives of a particular pattern (Palomares Bonache et al., 2012). Although requirements patterns

possess a generic form, their generic nature is restricted as RE overlaps with architectural design

(Slavin, Shen, & Niu, 2012).

Among existing patterns are requirement patterns particularly those introduced in (Withall,

2007) as a suitable way of writing software requirements with less effort and greater precision.

Withall (2007), defines requirements patterns as an approach to specifying a requirement. He

presents 37 reusable patterns, including templates and examples as a framework for writing general

software requirements. Withall’s requirements patterns are therefore regarded as more detailed and

complete compared to other pattern catalogues (Benitti & Silva, 2013). In general, requirements

patterns enable organizations to reuse requirements knowledge from previous projects instead of

starting from the scratch.

SRP can be used at different phases of RE, which include elicitation, analysis, validation

and specification (Franch et al., 2010; Srivastava, 2013). It has been considered as an artefact that

fosters RR (Palomares Bonache et al., 2012; Palomares et al., 2013). SRP is therefore viewed as

advantageous in software development lifecycle as it: offers RR through guidelines; improves the

quality and consistency of requirements through uniform style; improves requirements

management through traceability (Palomares et al., 2013). In addition, SRP facilitates reuse at

design and code levels since, implementations are indexed with their requirements patterns (Konrad

& Cheng, 2002).

In summary, SRP promotes RE process through reuse of requirements, production of

quality requirements and traceability amongst reusable requirements (Palomares Bonache et al.,

2012; Palomares et al., 2013).

However, realizing the benefit of reuse at the early stage of software development also requires an

adequate framework to affirm the structure of the reusable artifacts as well as appropriate tool that

facilitates the reuse process (López, Laguna, & Peñalvo, 2002b). Furthermore, management of

different models and notations for RR can be achieved by using high level of abstraction such as

meta-modeling, which can describe a formalization of concepts, relations and common features of

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

122

these models. In line with this, concept and importance of meta-modeling is presented in the next

section.

3. Meta-model approaches for reuse

Software reuse improves software productivity, especially when reuse of software artifacts is

applied at the early stage of software development (Benitti & Silva, 2013; Goldin et al., 2010;

López et al., 2002b; Velasco et al., 2009). RR in particular can empower and make software

development lifecycle more profitable. However, research has shown that, availability of different

notations, formats and granularity of requirements contribute in making RR challenging,

particularly its core activities such as representation, classification, storage, selection and

modification of reusable assets (López et al., 2002b; Seman et. al., 2010).

Table 1: Meta-model approaches for reuse

A meta-model provides a specification which a modeling process should fulfill, through

definition of the epistemology and design foundation of the modeling process, which consists

reasoning processes, proofs, logic, rules, constructs, axiom of validity among others (Van Gigch,

2013). Meta-modeling is a component of every system design problems and neglecting it incurs a

Study

Scope

Notation

Application

Meta-model

 Traceability? VM? SRP? Tool?

(Moros et al.,

2008)

General

purpose

Object

models

Variability

modeling

No Yes No Yes

(López et al.,

2002a)

General

purpose

Semi-

formal

diagrams

requirements

model

No No No Yes

(Franch et al.,

2010)

General

purpose

Natural

language

SRS Yes No Yes No

(Bachmann et

al., 2003)

SPL UML Variability

modeling

Yes Yes No No

(Gomaa &

Shin, 2002)

SPL UML Variability

modeling

No Yes No Yes

(Cavalcanti et

al., 2011)

SPL UML Variability &

Traceability

Yes Yes No Yes

(Goknil et al.,

2008)

MDE SysML SRS No No No Yes

(Goknil et al.,

2013)

MDE Product-

line/

SysML

SRS No No No Yes

(Cerón et al.,

2005)

SPL/ MDE UML Software

Process

Yes No No Yes

(Navarro et

al., 2006)

General

Purpose

UML SRS Yes Yes No Yes

(Moon et al.,

2007)

SPL UML Variability

Management

Yes Yes No No

Our proposed

Meta-

Modeling

Constructs for

RR

RE/SPL/

MDE

Natural

language/

UML

Requirements

Analysis & SRS

Yes Yes Yes Yes

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

123

major flaw of many system designs (Van Gigch, 2013). As such it is imperative to adopt meta-

modeling as part of a framework to support and empower RR.

As we pointed out in our previous work (Ya'u, Nordin, & Salleh, 2016b), there are very

little work reported in the literature on meta-modeling for the enhancement of RR despite their

reported importance in software development. Table 1 summarizes meta-modeling approaches for

reuse according to certain criteria, such as the scope of reuse, different notations used, area of

application and the major constructs of the meta-model. Among dozens of RR approaches available

in the literature, we could not find many studies, which glaringly address RR in form of a meta-

model. Furthermore, from these meta-modeling approaches, it can be seen that 3 are general

purpose meta-modeling approaches from which two (López, Laguna, & Peñalvo, 2002a; Moros,

Toval, & Vicente Chicote, 2008) do not use SRP in their proposals. For instance, in (Moros et al.,

2008), the main focus is on modeling variability in requirements models to enable RR from two

facets, that is, modeling for reuse and with reuse. In that approach, traceability of requirements was

facially discussed. If we look at (López et al., 2002a), beside exclusion of SRP in their approach,

neither traceability nor variability management (VM) was applied. They took advantage of meta-

modeling concept and focused on the integration of semi-formal diagrams for achieving RR. Two

approaches, (Bachmann et al., 2003; Gomaa & Shin, 2002) are domain-specific; they use SPL

principles, which focus on VM, using UML notation; none of these two approaches explicitly

address RR. The approach (Franch et al., 2010), proposes a meta-model for SRP, which describes

a form of requirements traceability. However, VM is not addressed in this approach.

A meta-model approach for supporting variability and traceability was presented in

(Cavalcanti et al., 2011). The aim was to coordinate activities in SPL by managing and maintaining

traceability and variability among different artifacts in various phases of software development.

The meta-model in that approach provides support in different aspects such as scoping,

requirements, tests, and project and risk management. The approach is supported by a web tool,

using Django framework. The meta-modeling aspect does not focus on RR nor does it use SRP in

the requirements analysis.

In (Goknil, Kurtev, & van den Berg, 2008), a meta-model for requirements model called

core meta-model and an approach for customizing this core meta-model were presented. The core

meta-model enables reasoning on requirements, thus allowing detection of implicit relations and

inconsistencies within the requirements based on formalization of concepts and relations defined

in the core meta-model. The approach applied web ontology language (OWL) technique and aimed

at providing an avenue for reusing tool such as reasoners. The approach therefore, combines RE

and MDE methodologies. Nonetheless, SRP, traceability and variability were not treated as part of

the meta-modeling aspect.

In an extension for (Goknil et al., 2008), an additional feature for reasoning on

requirements and their relation in multiple requirements modeling approaches was presented in

(Goknil, Kurtev, & Millo, 2013). The idea is to use requirements meta-model as a core meta-model

specialized for different requirements modeling approaches and notations such as product-line and

SysML. The specialization allows the use of the same semantic (given in first order logic) and

reasoning mechanism for the core meta-model for multiple requirements modeling approaches,

thus enables change impact analysis. A Tool for Requirements Inferencing and Consistency

Checking (TRIC) was developed and requirements, their relations and properties are mapped to

OWL during the tool implementation.

A meta-model for RE in Systems Family context was presented in (Cerón, Dueñas,

Serrano, & Capilla, 2005). The work discussed the important issues of System Family Engineering

(SFE) in requirements modeling, which contains common and variable parts; functional and non-

functional aspects. Capability Maturity Model Integration (CMMI) was used as a base to improve

software process. A meta-model, which covers several of the specific needs of SFE concerning

requirements management and traceability, was presented. The approach emphasized on feasibility

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

124

of adopting RR in SFE. Although the approach combines RE, SFE and MDE, application of SRP

and variability management in RE and SFE respectively were not covered.

In (Navarro, Letelier, Mocholi, & Ramos, 2006), a meta-modeling approach for integration

and scalability of RE concepts was presented. The approach combined RE and MDE, thus claimed

management of traceability and variability in the RE concepts with the aid of MetaEdit+, a tool

support for modeling and meta-modeling. Employment SRP to structure the requirements artifacts

was the focus of the approach.

A meta-modeling approach for tracing variability between requirements and architecture

was presented in (Moon, Chae, Nam, & Yeom, 2007). At the first stage, two meta-models for

representing domain requirements and domain architecture with variability were presented. In that

stage, trace relationships between requirements and architecture with respect to variability was

described. In the second stage, another meta-model, a variability trace meta-model was defined as

a means of realizing and coordinating the interrelationships of the two meta-models, the domain

requirements and the domain architecture meta-models. The approach did not use SRP for

structuring the requirements nor did it present tool for automating for tracing the variability

between the requirements and the architecture.

To promote systematic RR and fully exploit the potential benefit of RR in software

development processes, we need to integrate both traceability, VM and SRP in a meta-model as we

propose in Section 4.

4. Methodology

This section presents the methodology employed for the proposed approach, that is, the section

describes from the beginning where we started our research on RR to the current stage according

to the following steps depicted in Figure 1.

4.1 Analysis of RR approaches

Reuse of software artefacts has been interesting topic of research for decades. However, reviews

from the literature reveal that the current state of reuse practice needs to be revolutionized to meet

customers and organizational needs. This motivated us to investigate in detail what RR reuse

approaches exist hitherto and what RR challenges so far reported in the literature. As one of our

objectives, the result and details of the existing RR and the challenges were published in our

previous research (Ya'u et al., 2016a). In a null shell, we have discovered that amongst the popular

RR approaches in the literature include domain-specific, pattern-based, ontology-based and general

Figure 1: Methodology steps for RR

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

125

approach. In the other hand, the major challenge of RR reuse has been a systematic reuse structure,

awareness and tool support.

4.2 Analysis of requirement patterns

In line with the result published in (Ya'u et al., 2016a), we have discovered that pattern-based

approach has the higher potential to leverage RR in terms of consistent structure. One of the major

challenges of RR is systematic structure for reuse. To fill this gap, we analyzed the capabilities of

requirement patterns reported by many researchers in the literature as we discuss in Section 2

especially the work published in a book by Withal (Withall, 2007). After scrutinizing various

pattern templates, we found that requirements pattern provides a structure in which detailed

information required to specify and reuse requirements is logically organized. The anatomy of

requirements pattern includes pattern author, related pattern, applicability, problem and solution to

mention a few.

4.3 Adaption of RePa to suit SPLE

RePa is an International Workshop on requirements patterns, which was organized to provide a

standard requirement patterns template for specifying requirements (Chung, Paech, Zhao, Liu, &

Supakkul, 2012). Since many specific requirements patterns exist in the literature, the common

template was designed to provide uniformity for requirements patterns cataloging. The template

consists of three sections, the required, optional and custom. In our approach, we use the custom

section to complement the work of Withal by adding ‘Consideration for Design’ sub-section. This

sub-part is of utmost important when designing software development process especially when

dealing with the discrepancies between problem and solution domains. This also harmonizes

development processes and sub-processes in SPLE for instance reuse of software artefacts from

domain requirement engineering through design sub-process to testing sub-process. Because of the

vast and detailed information required to manage commonality and variability of requirements and

the complexity due to the size of the scope of the product line, we believe that requirement pattern

approach can play a vital role in orchestrating different types of requirements.

4.4 Construction of SRP for e-learning

Having considered and adapted RePa template for SPLE, we explore from various sources of

software requirements specification or documents in the literature. However, due to intellectual

property right. And other constraints, it was difficult to retrieve as many SRS as we intended to

find. Nonetheless, e-learning, mobile, insurance (Takaful) medical records requirements were

retrieved. Because of the quantity and authenticity of the sources, we selected to use e-learning

domain as an example to evaluate our proposed requirements pattern template. As it can be seen,

Table 2 presents the details of Inquiry requirement pattern, which also includes the custom section

we mentioned earlier. This guides requirement engineering or developer to understand in deep what

requirement of this type constitutes. To implement and reuse the requirement of this type,

Table 3 describes the solution section of the Inquiry requirement pattern, which comprises of

pattern goal, primary/ main requirement, common and variable requirements and variability model

information.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

126

Table 2: Inquiry requirement pattern

Section Description

Pattern ID RP5

*Pattern Name Inquiry

Also Known As NA

Authors Stephen Withal

Date Created 2017-01-01

*Context/

Applicability

*RE Activity Specification

*Pattern Type Product

Business Domain E-learning

Organization

Environmental Factors

Teaching and Learning Environment

Stakeholders Role Students, Instructors, Teachers, Administrators

Goal To use e-learning application in running and

delivering their organization responsibilities

*Problem AKA Intent and Objective Poor security measures to protect unauthorized access to

information system

*Force A cutting-edge e-learning security facility to protect teaching

and learning applications

*Solution Refer to “Solution” Section

*Application and Example

Application: This pattern is applied in the events where

inquires on information stored in a database are

displayed to the user

Example: The system shall display information on the screen

for all inquiry on the database.

*Known Uses Web-based and desktop applications.

Cataloguing:

Classification

Type Functional

Default Value

Purpose This indicates whether the functionality of

this requirement that shall be provided by

the system is satisfied

Audience Role Software and requirement engineers

Audience

Goal

Software requirement specification for SPL

Allowed

Value

True

Related Pattern ID RP6

Name Report

Relation Type Extends Yes

Refers No

Custom Section Consideration

for Design

Description This describes the aspect of the design that

should be considered for the requirements of

this type.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

127

Purpose This highlights the reason why the design

for the implementation of the type of

requirement is considered

Constraint This provides with those design constraints

a software designer should consider.

Design

Pattern

This lists the name of the design pattern that

corroborates with this requirement pattern.

Design Guide This highlights a step by step guide for

designing the implementation of

requirement of this type.

Consideration

for

Development

Description This describes the needs for considering the

development of the functionality of

requirement of this type.

Purpose This details the purpose for considering the

implementation of requirement of this type

Constraint This clearly shows the kinds of constraints

that affect the implementation of

requirement of this type

Development

Guide

For this type of pattern, the following have

to be considered;

1. Check the availability of

information

2. Find out whether there are potential

performance concerns

3. If display is refreshed

automatically, how easy is it to

achieve that in the prospective user

interface environment?

Consideration

for Testing

Description This describes the needs for testing the

functionality of requirement of this type.

Purpose This states the reasons for considering the

testing for the functionality of the

requirement of this type.

Constraint This describes the constraints for testing the

requirement of this type.

Test Type This part states the type of testing executed

for the function of the requirement of this

type

Test Guide To be satisfied with the Inquiry

requirements, test it by displaying the

inquiry to verify that it shows what is

intended to show. For example, identify all

types of information that must be viewable

including all database tables.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

128

Table 3: Solution section of inquiry

Solution ID PS5.1

Pattern Name Inquiry

Goal Display inquiry

Description This pattern for is for specifying inquiry requirements from the system.

Requirement ID RQ5.1.1

Name Financial transaction

Type Functional

Description The system shall provide a function of a requirement of this type to

enable a user to make an inquiry for the information stored in the

system

Priority High

Common

Requirement

Form

ID CR5.1.1.1

Description This form establishes inquiry requirements for information stored in

the database of the system

Constraints Fixed part (1)

Extended part:

1. Selected customer

2. Selected data range

Fixed Part Form Text There shall be an inquiry that shows the details of

financial transaction.

Extended

Part

Form Text The system shall allow an inquiry of financial

transaction of a customer based on the following:

1. selected customer

2. selected data range

Variable

Requirement

Form

ID VR5.1.1.1

Description This form shows variable requirements for specifying different

variation points of Inquiry requirement pattern

Constraints Fixed part (1)

Variable part:

1. by credit

2. by cash

Fixed Part Form Text The system shall display an inquiry of financial

transaction either made by credit or cash

Variable

Part

Variation Points

(VP)

Inquiry

Variants (V) 1. credit

2. cash

Variability

Model Form

Description This form establishes the need to use orthogonal variability model to

show and trace the level of variations in different requirements

artefacts.

Constraints Focus on orthogonal variability models

Model (s) Textual requirements, feature models, traditional requirement model,

UML models

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

129

5 Our proposed meta-modeling constructs

In this section, we present our proposed meta-modeling constructs, which we believe they can

support in realizing a systematic RR. The proposed approach is a general framework to systematic

RR, comprising both design facets (design for reuse and design with reuse) and can be applied to

any software product family. To achieve our aim, our approach combines three sub-fields of SE:

RE, SPLE and MDE. RE covers various phases of software developments such as elicitation,

identification, analysis, modeling etc. Our proposed area of application includes requirements

analysis (elicitation, analysis and documentation) and writing of SRS. Because, these activities

usually commence at the initial stage of software development, which offers more reuse benefits

as discussed earlier. Through RE processes, we can exploit potential benefits of SRP. SRP enables

uniform development of system specifications, thus making understanding and maintenance of

these specifications easier (Konrad & Cheng, 2002). From their capability of capturing proven

knowledge, requirements patterns are thought to be a powerful tool for streamlining RE processes

(Mahendra & Ghazarian, 2014). Concept and benefits of using SRP to promote RR in software

development are previously discussed in Section 2.

SPL is a popular and successful reuse approach in software development for systems of

family, which is known in commonality and variability management of reusable software artifacts

in the product families (Sinnema, Deelstra, Nijhuis, & Bosch, 2004). The ultimate objective of

product line engineering is improvement of productivity such as reduction of development time

and cost as well as increasing quality of products (Royer & Arboleda, 2013). However, SPLE

demands a mature SE, planning and reuse, adequate practices of management and development as

well as having capability to manage organizational issues and architectural complexity, which

require the support of auxiliary methods and tools (Cavalcanti et al., 2011).

The future trend in SPLE is to automate its production plan. A successful technique for

defining an executable tool chain is MDE (Royer & Arboleda, 2013). In the context of SPL

therefore, modeling is seen as a mechanism to define and represent variability involved in a family

of products (Cavalcanti et al., 2011). In this case, a meta-model can help tremendously in capturing

variability and commonality in SPLE (Royer & Arboleda, 2013).

Figure 2: Proposed meta-modeling constructs

Figure 2 presents a meta-model comprises of the 3 proposed constructs: (1) SRP (2) VM

and (3) Traceability. These together provide a systematic approach to RR in software development.

We include variability modeling in our proposal as being regarded an essential task during

analysis phase and also a crucial activity in developing SPL (von der Maßen & Lichter, 2002). The

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

130

modeling aspect of variability helps developers to have deep understanding of commonalities and

variabilities in SPL and as well supports product derivations (Czarnecki, Grünbacher, Rabiser,

Schmid, & Wąsowski, 2012; Sinnema & Deelstra, 2007). VM is also described as explicit

representation of variability in software product families (Bachmann et al., 2003; Sinnema et al.,

2004). This happens by treating the introduction, use and evolution of variability. That is, the ability

to modify a system or artifacts in a specific context (Sinnema & Deelstra, 2007).

6 Relationship concerning RE, SPLE and MDE

We discover some good relationships combining RE, SPLE and MDE in our proposed approach.

Their relations can help achieve the software productivity we mentioned earlier. RE, deals with all

aspects of obtaining quality requirements, which include requirements gathering, analysis,

negotiation and documentation. Some activities to improve the quality, structure and consistency

of requirements, such as SRP and traceability are therefore required. In addition, requirements are

considered mostly as textual artifacts, whose structure often not explicitly specified (Goknil et al.,

2008). Since requirements are one of the initial system models, it is important to represent

requirements description as models. This can in fact keep the continuum of models in MDE, where

every artifact is treated as a model. Representing requirements descriptions as model can only be

achieved by employing a meta-model for requirements (Goknil et al., 2008).

Since the main aim is to achieve systematic RR in product families, SPLE is a core domain

in reuse enhancement, which brings benefits in terms of costs and productivity. SPLE therefore,

encompasses both domain and application engineering phases, which deal with management of

requirements commonalities and variabilities respectively. The two engineering processes of SPLE,

domain and application are also referred as development for reuse and development with reuse

respectively (Royer & Arboleda, 2013).

Furthermore, MDE techniques and tool also have the potential to improve the quality and

productivity of SE processes. MDE paradigm emphasizes on three main concepts, which are

models, meta-models and model transformation. It uses software modeling as primary document,

which consists of requirements, feature model, use cases, unified modeling language, architectures

among others (Royer & Arboleda, 2013). MDE provides automation to SE processes at every stage

of development. In relation with SPLE, MDE is considered a promising discipline, which provides

uniformity and abstraction for software artifacts and processes within SPLE (Royer & Arboleda,

2013).

From the Venn diagram shown in Figure 3, the three sub-disciplines are interrelated with

the constructs of our proposed meta-modeling approach, in particular traceability. In RE,

traceability helps in describing, following and understanding the life of requirements and their

impact on other artifacts (Champeau & Rochefort, 2003); it also assist in identification of pairs

during verification and validation (Winkler & Pilgrim, 2010; Liew et. al., 2010).

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

131

Figure 3: Interrelationships of the combined SE sub-disciplines

In relation with SPL, traceability is recognized by researchers and practitioners as a key

aspect, which manages the complexity of commonalities and variabilities in SPL engineering

(Anquetil et al., 2008). In the context of model-driven engineering (MDE), traceability also helps

in understanding the existence of many dependencies between MDE artifacts (Paige, Olsen,

Kolovos, Zschaler, & Power, 2008); it keeps the models consistent and supports propagations

between these models (Winkler & Pilgrim, 2010). As such, the application level of traceability in

software development is considered as a measure of system quality and process maturity, which is

authorized by many standards (Aizenbud-Reshef, Nolan, Rubin, & Shaham-Gafni, 2006). Another

important construct in our meta-modeling approach is management of variability, which is a

common activity in SPLE and MDE. Management of variability is necessary in software

development if a meta-model incorporates some kind of reuse mechanism (Moros et al., 2008).

Furthermore, VM is the core task that distinguishes conventional SE and SPLE (Bachmann et al.,

2003; Berger et al., 2013).

7 Discussion

As reported in (Ya'u et al., 2016a), though the domain-specific, pattern-based, ontology-based and

general approaches address RR problems in some way, using single technique in the existing

approaches has a peculiar weakness. It is apparent in the literature that, most of the domain-specific

approaches use feature modeling to capture commonalities and variabilities in requirements, but

the variability information captured by feature models is incomplete (Moros et al., 2008).

Furthermore, feature modeling is thought to be time-consuming, expensive and perhaps limits the

opportunity of reuse outside a particular application domain (Naish & Zhao, 2011). For this reason,

there is need for further research to simplify the modeling aspect to represent variability and

commonality in a cost-effective manner.

In another way, ontologies help especially in formalizing requirements to improve quality

and enhance reuse. Nevertheless, formal representation is a developer-oriented technique, which

requires additional information to be understood and reused (Zhang et al., 2011). It was also

discovered that, most ontology-based approaches depend on static knowledge instead of dynamic

knowledge, which offers more reuse opportunity (Zong-yong, Zhi-xue, Ying-ying, Yue, & Ying,

2007). General approaches in their case, offer broader scope and greater opportunity for reuse in

variety of domains. However, the more generic approach is, the more time it consumes for detailed

analysis and description thus, reducing the benefit of reuse in terms of development timeframe

(Wiegers & Beatty, 2013).

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

132

In the case of pattern-based approach, of course pattern provides reusable structure.

However, it was discovered in a survey (Mahendra & Ghazarian, 2014) that, the concept of pattern

benefits only few software developers due to the following reasons: 1) requirements pattern

catalogues are not easily accessible to researchers and practitioners; 2) there is late growth trend in

construction of pattern catalogues and; 3) there is lack of tool to support the implementation of

patterns. It was reported that, there is still few proposals on SRP, which are basically distinguished

in criteria such as scope, formalism for constructing patterns, usage and goal of patterns and

underlying meta-model for patterns (Franch et al., 2010). As stated earlier, SRP is of utmost

important in any software related development processes, due to its recognized nature of enhancing

reuse. Nevertheless, SRP requires a well-defined and broader underlying meta-model, which would

describe more concepts.

As discussed in Section III, like SRP, meta-model approaches to RR are also few in the

literature and proposals based on these meta-models are generic and therefore, have limiting power

to reuse. Furthermore, the meta-modeling approaches do not consolidate all key aspects that

enhance reuse, which include consistent and reusable structure (in this case, SRP), VM and

traceability of reusable software artifacts.

Based on these findings, it is noticeable that, the existing RR approaches have limitations

in providing solution to systematic RR. We therefore recommend that, solutions of the existing

approaches should be integrated in a new strategy that could synergize and consolidate RR

technique. Furthermore, integrating RE, SPLE and MDE can open more new research trends, that

can guide and support researchers and practitioners in utilization of reuse opportunity, thus

increasing software productivity.

8 Conclusion and future work

In this paper, we present the concepts and evidences that show the importance of SRP and meta-

model in SE. We observed that, available meta-modeling approaches for RR in the literature fall

short in consolidating key elements to synergize reuse. These include reusable structures, VM and

traceability of reusable software artifacts. This indicates that, there is a clear gap to accomplishing

systematic RR. To fill this gap and highlight our contribution, we propose a meta-modeling strategy

for RR, which encompasses SRP, VM and traceability. Our approach syndicates RE, SPLE and

MDE sub-disciplines of SE and can be applied in any software product family development. We

believe that, this approach can empower systematic RR in software development lifecycle. To the

best of our knowledge as we reported in a previous research (Ya'u et al., 2016a), there is no

approach in the literature that reported such a meta-model that incorporates SRP, VM and

traceability of requirements. As such, our proposal is novel and can help developers in RE, SPL,

MDE and SE in general to exploit greater benefits of reuse, which gyrates across cost effectiveness,

quality products and time to market.

For our future work, we are currently working on the last portion of the meta-model and

implementation of a tool support to demonstrate our framework in the e-learning domain. In

addition, a quasi-experiment with requirement engineering final year undergraduate student has

been designed to evaluate the correctness of the tool.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

133

References

Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., & Shaham-Gafni, Y. (2006). Model traceability. IBM

Systems Journal, 45(3), 515-526.

Anquetil, N., Grammel, B., Galvao Lourenco da Silva, I., Noppen, J., Shakil Khan, S., Arboleda,

H., . . . Garcia, A. (2008). Traceability for model driven, software product line engineering.

Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K., Ramesh, B., & Vilbig, A. (2003). A

meta-model for representing variability in product family development. Paper presented at

the International Workshop on Software Product-Family Engineering.

Bakar, N. H., & Kasirun, Z. M. (2014). Exploring Software Practitioners’ Perceptions and

Experience in Requirements Reuse A Survey in Malaysia. International Journal of

Software Engineering and Technology, 1(2).

Basha, N., & Moiz, S. A. (2012). Component based software development: A state of art. Paper

presented at the Advances in Engineering, Science and Management (ICAESM), 2012

International Conference on.

Benitti, F. B. V., & Silva, R. C. d. (2013). Evaluation of a Systematic Approach to Requirements

Reuse. Journal of Universal Computer Science, 19(2).

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K., & Wąsowski, A. (2013).

A survey of variability modeling in industrial practice. Paper presented at the Proceedings

of the Seventh International Workshop on Variability Modelling of Software-intensive

Systems.

Cavalcanti, Y. C., do Carmo Machado, I., da Mota, P. A., Neto, S., Lobato, L. L., de Almeida, E.

S., & de Lemos Meira, S. R. (2011). Towards metamodel support for variability and

traceability in software product lines. Paper presented at the Proceedings of the 5th

Workshop on Variability Modeling of Software-Intensive Systems.

Cerón, R., Dueñas, J. C., Serrano, E., & Capilla, R. (2005). A meta-model for requirements

engineering in system family context for software process improvement using CMMI. Paper

presented at the International Conference on Product Focused Software Process

Improvement.

Champeau, J., & Rochefort, E. (2003). Model engineering and traceability. Paper presented at the

Workshop SIVOES-MDA, UML'03.

Chernak, Y. (2012). Requirements Reuse: The State of the Practice. Paper presented at the 2012

IEEE International Conference on Software Science, Technology and Engineering.

Chung, L., Paech, B., Zhao, L., Liu, L., & Supakkul, S. (2012). Repa requirements pattern template.

Paper presented at the International Workshop on Requirements Patterns (RePa ‘12).

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., & Wąsowski, A. (2012). Cool features and

tough decisions: a comparison of variability modeling approaches. Paper presented at the

Proceedings of the sixth international workshop on variability modeling of software-

intensive systems.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

134

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting empirical methods for

software engineering research Guide to advanced empirical software engineering (pp. 285-

311): Springer.

Franch, X., Palomares, C., Quer, C., Renault, S., & De Lazzer, F. (2010). A metamodel for software

requirement patterns. Requirements Engineering: Foundation for Software Quality (pp.

85-90): Springer.

Gabriel, R. P. (1996). Patterns of software Tales from the Software Community. 198 Madison

Avenue, New York, New York, 10016-4314: Published by Oxford University Press, Inc.,.

Goknil, A., Kurtev, I., & Millo, J.-V. (2013). A metamodeling approach for reasoning on multiple

requirements models. Paper presented at the Enterprise Distributed Object Computing

Conference (EDOC), 2013 17th IEEE International.

Goknil, A., Kurtev, I., & van den Berg, K. (2008). A metamodeling approach for reasoning about

requirements. Paper presented at the European Conference on Model Driven Architecture-

Foundations and Applications.

Goldin, L., & Berry, D. M. (2013). Reuse of requirements reduced time to market at one industrial

shop: a case study. Springer-Verlag.

Goldin, L., Matalon-Beck, M., & Lapid-Maoz, J. (2010). Reuse of Requirements Reduces Time to

Market. Paper presented at the 2010 IEEE International Conference on Software Science,

Technology & Engineering.

Gomaa, H., & Shin, M. E. (2002). Multiple-view meta-modeling of software product lines. Paper

presented at the Engineering of Complex Computer Systems, 2002. Proceedings. Eighth

IEEE International Conference on.

Hauksdóttir, D., Mortensen, N. H., & Nielsen, P. E. (2013). Identification of a reusable

requirements structure for embedded products in a dynamic market environment.

Computers in Industry, 64(4), 351-362. doi:10.1016/j.compind.2012.10.008

Hoffmann, M., Kühn, N., Weber, M., & Bittner, M. (2004). Requirements for requirements

management tools. Paper presented at the 12th IEEE International Requirements

Engineering Conference, 2004. .

Konrad, S., & Cheng, B. H. (2002). Requirements patterns for embedded systems. Paper presented

at the Proceedings of IEEE Joint International Conference on Requirements Engineering,

2002. .

Liang, P., Avgeriou, P., & Wang, C. (2011). Managing Requirements Knowledge using

Architectural Knowledge Management Approaches.

Liew, S. C., Liew, S.W., Zain, J.M. (2010). Reversible medical image watermarking for tamper

detection and recovery with Run Length Encoding compression. World Academy of

Science, Engineering and Technology, 72, 799-803.

López, O., Laguna, M. A., & Peñalvo, F. J. G. (2002a). Metamodeling for Requirements Reuse.

Paper presented at the WER.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

135

López, O., Laguna, M. A., & Peñalvo, F. J. G. (2002b). Metamodeling for Requirements Reuse.

Paper presented at the Proceedings of 5th. International Workshop on Requirements

Engineering (WER'02) November, 11-12, 2002., Valencia, Spain.

Mahendra, P., & Ghazarian, A. (2014). Patterns in the Requirements Engineering: A Survey and

Analysis Study. WSEAS Transaction on Information Science and Application, 11.

Monzon, A. (2008). A practical approach to requirements reuse in product families of on-board

systems. Paper presented at the 16th IEEE International Requirements Engineering, RE'08.

Moon, M., Chae, H. S., Nam, T., & Yeom, K. (2007). A metamodeling approach to tracing

variability between requirements and architecture in software product lines. Paper

presented at the Computer and Information Technology, 2007. CIT 2007. 7th IEEE

International Conference on.

Moros, B., Toval, A., & Vicente Chicote, C. (2008). Metamodeling variability to enable

requirements reuse. Paper presented at the Exploring Modellling Language for System

Analysis and Design, EMMSAD 2008.

Naish, J., & Zhao, L. (2011). Towards a Generalised Framework for Classifying and Retrieving

Requirements Patterns. Paper presented at the IEEE First International Workshop

onRequirements Patterns (RePa), 2011., Trento.

Navarro, E., Letelier, P., Mocholi, J. A., & Ramos, I. (2006). A metamodeling approach for

requirements specification. Journal of Computer Information Systems, 46(5), 67-77.

Nerurkar, N. W., Kumar, A., & Shrivastava, P. (2010). Assessment of reusability in aspect-oriented

systems using fuzzy logic. ACM SIGSOFT Software Engineering Notes, 35(5), 1.

doi:10.1145/1838687.1838706

Paige, R. F., Olsen, G. K., Kolovos, D. S., Zschaler, S., & Power, C. (2008). Building model-driven

engineering traceability classifications.

Palomares Bonache, C., Quer Bosor, M. C., Franch Gutiérrez, J., Guerlain, C., & Renault, S.

(2012). A catalogue of non-technical requirement patterns.

Palomares, C., Quer, C., Franch, X., Renault, S., & Guerlain, C. (2013). A catalogue of functional

software requirement patterns for the domain of content management systems. Paper

presented at the Proceedings of the 28th annual acm symposium on applied computing.

Royer, J.-C., & Arboleda, H. (2013). Model-Driven and Software Product Line Engineering: John

Wiley & Sons.

Sandhu, P. S., Aashima, Kakkar, P., & Sharma, S. (2010). A Survey on Software Reusability. Paper

presented at the IEEE International Conference on Mechanical and Electrical Technology

(ICMET 2010).

Seman, A., Abu Bakar, Z., Mohd. Sapawi, A. (2010). Centre-Based Hard Clustering Algorithms

For Y-Str Data, Malaysian Journal of Computing, 1, 62-73.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

136

Sinnema, M., & Deelstra, S. (2007). Classifying variability modeling techniques. Information and

Software Technology, 49(7), 717-739.

Sinnema, M., Deelstra, S., Nijhuis, J., & Bosch, J. (2004). Covamof: A framework for modeling

variability in software product families Software product lines (pp. 197-213): Springer.

Sjoberg, D. I., Dyba, T., & Jorgensen, M. (2007). The future of empirical methods in software

engineering research. Paper presented at the 2007 Future of Software Engineering.

Slavin, R., Shen, H., & Niu, J. (2012). Characterizations and boundaries of security requirements

patterns. Paper presented at the Requirements Patterns (RePa), 2012 IEEE Second

International Workshop on.

Srivastava, S. (2013). A Repository of Software Requirement Patterns for Online Examination

System. International Journal of Computer Science Issues (IJCSI ‘13), 3.

Van Gigch, J. P. (2013). System design modeling and metamodeling. US: Springer Science &

Business Media.

Velasco, J. L., Valencia-García, R., Fernández-Breis, J. T., & Toval, A. (2009). Modelling reusable

security requirements based on an ontology framework. Journal of Research and Practice

in Information Technology, 41(2), 119.

von der Maßen, T., & Lichter, H. (2002). Modeling variability by UML use case diagrams. Paper

presented at the Proceedings of the International Workshop on Requirements Engineering

for product lines.

Wiegers, K. (2005). More about software requirements: thorny issues and practical advice.

Redmond, Washington: Microsoft Press.

Wiegers, K., & Beatty, J. (2013). Software Requirements (3rd ed.). Redmond, Washington:

Microsoft Press.

Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-

driven development. Software and Systems Modeling (SoSyM), 9(4), 529-565.

Withall, S. (2007). Software requirement patterns: Pearson Education.

Ya'u, B. I., Nordin, A., & Salleh, N. (2016a). Investigation of Requirements Reuse (RR) Challenges

and Existing RR Approaches. Paper presented at the Advanced Research in Engineering

and Information Technology International Conference, Bandong, Indonesia.

Ya'u, B. I., Nordin, A., & Salleh, N. (2016b). Software requirements patterns and meta model: A

Strategy for enhancing Requirements Reuse (RR). Paper presented at the Information and

Communication Technology for The Muslim World (ICT4M), 2016 6th International

Conference on.

Ya’u, B. I. (2015). Component-Based: The Right Candidate for Restructuring the Nature of

Software Development in Organizations. International Journal of Engineering and

Computer Science, 4(8), 8.

Ya’u, Nordin and Salleh, Malaysian Journal of Computing, 3 (2): 119–137, 2018

137

Zhang, Z., Nummenmaa, J., Guo, J., Mai, J., & Wang, Y. (2011). Patterns for Activities on

Formalization Based Requirements Reuse. Knowledge Engineering and Management,

AISC Springer-Verlag, 123, 695-707.

Zong-yong, L., Zhi-xue, W., Ying-ying, Y., Yue, W., & Ying, L. (2007). Towards a multiple

ontology framework for requirements elicitation and reuse. Paper presented at the IEEE

31st Annual International Conference on Computer Software and Applications ,

COMPSAC 2007. .

