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  ABSTRACT 

 

Rabies is a viral disease that     claims about 59 000 lives globally every year. The ignorance of the fact 

that man can be a carrier of the disease makes every practical and theoretical approach towards the study 

of the disease a good development. In this work, a mathematical model is designed to incorporate a 

saturated incidence rate such that the incidence rate is saturated around the infectious agents. The model 

is studied qualitatively via stability theory of nonlinear differential equations to assess the effects of general 

awareness, constant vaccination and the saturated treatment on the transmission dynamics of rabies 

disease. The effective reproduction number is derived and the numerical simulation is carried out to verify 

the analytical results. It is discovered that while general awareness plays pivotal roles in averting rabies 

death, multiple control measures have the tendency of driving rabies to extinction. 

 

Keywords:  Rabies, stability theory, reproduction number, simulation  

1.          Introduction 

  

Rabies has a long history and was first recorded in China about 556 BC (Ruan, 2017). It is a viral infection 

that affects the brain of man and animals. Relevant data indicate that rabies occurs in over one hundred and 

fifty countries and territories worldwide (Asamoah et al., 2017). In the United States, the disease spread 

into human population through animals like foxes, bats, raccoons and skunks whereas, in Africa, Latin 

America and Asia, the disease gets into human population mainly through dogs. Rabies transmission is 

mostly attributed to bites or scratches from rabid animals. All mammals are susceptible to rabies infection 

but dogs are the major carriers of rabies and the cause of several human rabies deaths globally. The rabies 

virus affects the central nervous system, resulting in infection in the brain and eventually death. Once the 

rabies symptoms have developed, its mortality is almost sure. The mortality from rabies infection is nearly 

100%. In many countries, rabies is neither epidemic nor endemic which makes so many people to be 

ignorant of it but rabies infection has a catastrophic effect to the degree that whoever is infected with it has 

less than one in hundred chances of survival. 

             Several mathematical models have been developed in order to gain deeper understanding of the 

transmission dynamics and management of rabies. Asamoah et al. (2017) developed a model to examine 

an optimal way of eliminating rabies propagation from dogs into human population by using pre-exposure 

prophylaxis (vaccination) and post-exposure prophylaxis (treatment) in the presence of public education. 

Their results indicated that global eradication of deaths from canine rabies by the year 2030 is achievable 

through continuous vaccination of susceptible dogs and continuous application of both pre and post 

exposure prophylaxis in man. Also, the impact of immigration, treatment and vaccination on the 

transmission dynamics of rabies was studied in (Tulu & Koya, 2017; Ibrahim et. al., 2018).  It was 

discovered that rabies tended to disappear if there was effective control of infected immigration dogs and 

if the vaccination and treatment programmes are considerably improved. Otherwise, there would be a rapid 
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transmission of rabies in the dog population and the disease would become endemic. Studies on rabies also 

exist in (Njankou & Nyabadza, 2016; Sharomi & Malik, 2017). 

             Mathematical modeling is a powerful technique in the epidemiological studies because it offers 

opportunities to understand the basic mechanisms that affect the transmission of diseases and may suggest 

intervention strategies. Mathematical models examine the contributory factors to the emergence and 

dynamics of a disease, such as recovery rates and transmission rates, and predict how the infection will 

transmit over a period of time. Considerable attempts have been made by the researchers to design realistic 

mathematical models for investigating the transmission mechanisms of infectious diseases. The dynamics 

of disease transmission is built around the incidence rate which is the function that describes the mechanism 

of spread of the diseases. Fundamentally, the incidence function depends on both the susceptible and 

infectious categories of a population. The bilinear incidence rate is commonly applied to model epidemic 

diseases (Peter et al., 2018; Akanni & Adediipo; 2018; Muthuri & Malonza, 2018; Rathi et. al., 2018). 

Bilinear incidence rate is centered on the law of mass action. For example, if the proportion of the 

susceptible and infectious individuals in a population is represented by S and I respectively, and if 𝛼 is the 

effective contact rate, then we assume that the disease spreads with the rate 𝛼𝑆𝐼. The mass action law 

(contact law) is more suitable for infectious diseases such as Ebola,  but not for sexually oriented diseases 

like gonorrhea.  

             Besides, the bilinear incidence law may not produce appropriate results for a good number of 

reasons. For instance, the assumption of homogeneous mixing is not always realistic. In this sense, 

heterogeneity should be incorporated into the population structure such that a model is designed in terms 

of a basic form of nonlinear transmission because most real life phenomena are nonlinear and are better 

described by nonlinear equations. The mass incidence function can also be limited by the intervention 

policies adopted by the public authorities such as quarantine which will definitely affect the contact rate 

between the susceptible and infectious individuals. Therefore, researchers have argued for nonlinear 

incidence rates for modeling transmission dynamics of infectious diseases because the proportion of the 

effective contacts between the susceptible and infectious individuals can be saturated at high infection level 

as a result of the crowding of infectious individuals or due to the awareness or protective strategies by the 

susceptible individuals. It is on this note that we incorporated a saturated incidence rate into the model in 

Ayoade et al. (2017) in order to capture the essential dynamics of rabies and to provide a robust 

mathematical analysis of the disease.  

 

2.       Material and Methods 

The impact of vaccination on measles epidemiology was studied in Ayoade et al. (2017) by using SIR 

compartmental model as a frame. It was discovered that measles outbreak is doomed to a rapid failure if 

the vaccination timing, coverage and efficacy were above certain critical threshold. However, a single 

intervention strategy was adopted in the analysis. Besides, the analysis was based on the bilinear incidence 

rate while saturated incidence rate was not considered. The present work adopts the model in Ayoade et al. 

(2017) but incorporates multiple interventions and saturated incidence rate to study the transmission 

dynamics of rabies disease. The transfer diagram for the model is as follows:  
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Figure. 1. Flow diagram of the model 

 

 

The model is made up of compartments of susceptible individuals S(t), infectious individuals I(t) and 

recovered individuals R(t). Each of the compartments is a function of time which implies that the population 

in each of them can fluctuate with time. The susceptible population S(t) is generated through the coming of 

individuals as a result of birth at a rate 𝛽. The compartment however, reduces by the natural death rate 𝜇,  

the infection rate 𝛼 and by the acquired immunity from vaccination at a rate 𝑚1. Certain proportion of the 

susceptible individuals who are successfully vaccinated would receive immunity against the infection and 

will move straight to the recovered class since they are immune to the disease. Also, the infection rate 𝛼 is 

reduced by 𝜃, which is the rate of awareness of rabies disease. 

             The population dynamics of the infected class I(t) is produced with the incidence rate 𝛼 (1 − 𝜃)𝑆𝐼. 

The class however decreases by the natural death rate 𝜇, by the disease-induced death rate 𝛿 and by the 

successful treatment of rabies patients at a rate 𝑚2. Lastly, the recovered compartment R(t) is generated 

with the successful treatment of rabies patients at a rate 𝑚2 and by the immunity conferred through the 

introduction of vaccination at a rate 𝑚1. The class however decreases by the natural mortality rate 𝜇. For 

convenience, we shall write S(t), I(t) and R(t) as S, I and R respectively. In view of the above transfer 

diagram and assumptions, we come about the following set of first order nonlinear ordinary differential 

equations: 

 
𝑑𝑆

𝑑𝑡
= 𝛽 − 𝛼(1 − 𝜃)𝑆𝐼 − 𝜇𝑆 −𝑚1𝑆                         (1)                                       

𝑑𝐼

𝑑𝑡
= 𝛼(1 − 𝜃)𝑆𝐼 −

𝑚2𝐼

1+𝐼
− (𝜇 + 𝛿)I                       (2) 

𝑑𝑅

𝑑𝑡
= 𝑚1𝑆 +

𝑚2𝐼

1+𝐼
− 𝜇𝑅                          (3) 

 

The numerical values assigned to the parameters to conduct simulations are presented in table 1. 
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Table 1: parameters description, symbol, values, units and sources 

Parameter Symbol Value Unit Source 

Human recruitment rate 𝛽 0.0314 year -1 Asamoah et al., (2017) 

 Death rate due to rabies 𝛿 1 year -1  Asamoah et al., (2017) 

Death rate unrelated to rabies 𝜇 0.0066 year -1 Ruan, (2017) 

Human vaccination rate 𝑚1 0.0001 year -1 Assumed 

Rate of rabies awareness 𝜃 0.001 year -1 Assumed 

Rate of rabies treatment 𝑚2 0.01 year -1 Assumed 

Contact rate (dog-man) 𝛼 0.00000000229  year -1 Assumed 

 

The above parameters are drawn in accordance with the current happenings in most African countries 

especially Nigeria. 

2.1        Basic Features of the Model      

A disease model is suitable to conduct a study if it satisfies basic epidemiological conditions. We shall 

verify whether our model satisfies these conditions or not. 

2.1.1        The Invariant Region 

The invariant region establishes the domain in which the solutions of the model are both biologically and 

mathematically meaningful. Hence, we shall show that the region   where the model is sensible remains 

positively invariant and attracting for all 0t  . That is, all the solutions in   remains in    for all 0t 

.                      

Proof 1. 

The total human population N at any time t is obtained as 

𝑁(𝑡) = 𝑆(𝑡)+ 𝐼(𝑡)+ 𝑅(𝑡)  

Since the human population can fluctuate with time then, 

𝑑𝑁

𝑑𝑡
 = 
𝑑𝑆

𝑑𝑡
 + 
𝑑𝐼 

𝑑𝑡 
 + 
𝑑𝑅

𝑑𝑡
  

∴  
𝑑𝑁

𝑑𝑡
= 𝛽 – 𝜇𝑁(𝑡) – 𝛿𝐼                                             (4)  

The absence of rabies pathogen in eqn. (4) will account for the absence of rabies death i.e. 𝛿 = 0. Thus, 

equation (4) reduces to  

𝑑𝑁

𝑑𝑡
≤ 𝛽 – 𝜇𝑁(𝑡),         (5) 

so that 
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𝑑𝑁

𝛽 – 𝜇𝑁(𝑡) 
 ≤ 𝑑𝑡               (6) 

Following Birkhoff and Rota’s theorem as in Kadaleka (2011) then, 

ln(𝛽 –  𝜇𝑁(𝑡) )  ≥ 𝑡 + 𝑐1                                                                                           (7) 

∴ (𝛽 –  𝜇𝑁(𝑡) ) ≥ 𝑝1𝑒
−𝜇𝑡 ,        (8) 

where 𝑝1 is a constant and 𝑝1= 𝑒𝑐1 

At initial time, 𝑡= 0 and  𝑁(0) = 𝑁0. Then, put 𝑡 = 0 and 𝑁(0) = 𝑁0 in inequality (8) to obtain 

 (𝛽 –  𝜇𝑁0) ≥ 𝑝1. 

Substituting for 𝑝1 in inequality (8) to obtain 

𝛽 –  𝜇𝑁(𝑡) ≥ (𝛽 –  𝜇𝑁0)𝑒
−𝜇𝑡       (9) 

Rearranging inequality (9) in terms of 𝑁(𝑡) to obtain 

𝑁(𝑡) ≤
𝛽

𝜇
− (

𝛽 – 𝜇𝑁0

𝜇
) 𝑒−𝜇𝑡                                                                                          (10) 

As 𝑡 → ∞ in inequality (10), then the total human population 𝑁(𝑡) reduces to  

𝑁(𝑡) ≤
𝛽

𝜇
                                                                                             (11) 

In this regards, all the feasible solutions for the living population in the system (1) – (3) exist in the region      

  = {(𝑆, 𝐼, 𝑅 ) ∈ 
+

3
, 𝑁(𝑡) ≤

𝛽

𝜇
}                    (12) 

The above is a positive invariant set of the model which shows that the model is both biologically and 

mathematically meaningful in the domain  . Hence, every analysis of the dynamics of the flow generated 

by the model can be considered in  .   

2.2.2       The Positivity of Solution 

The positivity of solution establishes the non-negativity of solutions of the model under study. Since the 

model monitors living population, it is assumed that all the variables and parameters of the model are 

positive for all 0t   and we expect positive solutions for the model. 

 Theorem 1: Suppose the initial values for the state variables are all positive i.e.  𝑆(0) > 0, 𝐼(0) > 

0 and 𝑅(0) > 0 then the solution {𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)} of the model equations (1) – (3) are all positive for all 

0.t  i.e. the model has positive solutions for all the state variables as long as the initial values of the state 

variables are positive. 
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Proof 2. 

The above theorem shall be proved for eqn. (1) – (3). From eqn. (1), 

𝑑𝑆

𝑑𝑡
= 𝛽 − 𝛼(1 − 𝜃)𝑆𝐼 − 𝜇𝑆 −𝑚1𝑆    

𝑑𝑆

𝑑𝑡
 ≥ −(𝜇 +𝑚1)S           (13)  

Separating the variables in the above and integrate 

ln 𝑆  ≥ −(𝜇 +𝑚1)𝑡 + 𝑐2                                                                                           (14) 

𝑆(𝑡)   ≥ 𝑝2 𝑒−(𝜇+𝑚1)𝑡  ,         (15) 

where 𝑝2 = 𝑒𝑐2. At initial time, 𝑡= 0 and, on substitution into inequality (15),  

𝑆(0)   ≥ 𝑝2  

Thus, inequality (15) becomes 

𝑆(𝑡)   ≥ 𝑆(0) 𝑒−(𝜇+𝑚1)𝑡            (16) 

Repeating the same process for the second and third equations in the system (1) - (3) respectively, the 

following results are obtained: 

𝐼(𝑡)   ≥ 𝐼(0) 𝑒−(𝜇+𝛿)𝑡          (17) 

𝑅(𝑡)   ≥ 𝑅(0)𝑒−𝜇𝑡         (18) 

Since 𝑒𝑞 > 0 for all real values of 𝑞 then it is sufficient to conclude that the solutions for each state variable 

𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡)of the model are positive for all 𝑡 > 0. Having satisfied the basic features of the 

epidemiological models, the model equations (1) – (3) were suitable to study the dynamics of rabies disease. 

3.0         Theory/Calculation 

Since the model satisfies the basic biological conditions, it is suitable to conduct the study at hand. Hence, 

we shall perform equilibrium analysis, stability analysis and derive the effective reproduction number 

before conducting numerical simulations. 

3.1         Equilibrium Analysis 

Equilibrium is attained in disease models when the rate of change of the first derivative is zero. The 

solutions obtained at this point are called equilibrium solutions. Equilibrium is of two types in 

epidemiology: equilibrium attained when a society is free pathogen known as the disease-free equilibrium 

and the equilibrium attained when a society is under the threat of pathogen known as the endemic 

equilibrium.  
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3.1.1         Existence of Disease-Free Equilibrium, 𝐷0  

When the entire population is free from rabies pathogen then, nobody is infected with rabies and nobody 

recovers from rabies infections hence, 𝐼 =0 but 𝑅 ≠ 0 in this case unlike in many situations. The reason is 

that recovery is not only as result of successful treatment after infections but also as a result of immunity 

acquired through vaccination which has been put in place as a measure should rabies breaks out in the 

population. Hence, 𝑅 is a function of 𝑚1 and 𝑚2 where 𝑚1 has nothing to do with treatment after infection. 

Using the condition 𝐼 =0, 𝑅 ≠ 0 to solve eqns (1) – (3) then,  

𝐷0 = (
𝛽

(𝜇+𝑚1)
, 0,

𝑚1𝛽

𝜇(𝜇+𝑚1)
)             (19) 

3.2         The Effective Reproductive Number, 𝑅𝐹 

It is a non-dimensional quantity that measures the transmission potential of an infectious disease in a 

population where intervention strategies are on ground. How many people will an infectious individual 

infects should he get into the population of susceptible individuals where interventions are on ground? The 

answer to the question can be provided by the effective reproduction number. If the infectious individual is 

able to infect, say, three persons, it means 𝑅𝐹 = 3 > 1 and the disease will spread in the population. On the 

other hand, if the infectious individual could not infect a single individual in the population, say, 0.3 person, 

it means 𝑅𝐹 = 0.3 < 1 and the disease will not spread. Hence, while rabies will break out in the population 

if 𝑅𝐹 > 1, it will not break out as long as  𝑅𝐹 < 1. We shall obtain the effective reproduction number for 

our model by solving eqn. (2) and use the result to investigate whether the disease will spread or not.  

From eqn. (2) 

𝛼(1 − 𝜃)𝑆𝐼 −
𝑚2𝐼

1+𝐼
− (𝜇 + 𝛿)I = 0 and, 

𝐼 [
𝛼𝛽(1−𝜃)

(𝜇+𝑚1)
𝐼 − (𝜇 + 𝛿)𝐼 +

𝛼𝛽(1−𝜃)

(𝜇+𝑚1)
− (𝑚2 + 𝜇 + 𝛿)]= 0 

𝐼 = 0 corresponds to the disease-free equilibrium and, following the same approach as in (Xiao & Ruan, 

2007; Bakare et al., 2017), the effective reproduction number is  

 𝑅𝐹 = [
𝛼𝛽(1−𝜃)

(𝜇+𝑚1)(𝑚2+𝜇+𝛿)
].                      (20) 

If all the interventions are reduced to zero, the effective reproduction number reduces to the basic 

reproduction number given as 

 𝑅0 = [
𝛼𝛽

𝜇(𝜇+𝛿)
].            (21) 

 

 

 

3.3         Local Stability of the Disease-Free Equilibrium 
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The local stability analysis of the disease-free equilibrium shall be conducted via the linearization approach. 

Theorem 2: The disease-free equilibrium of the system of eqns (1) – (3) is locally asymptotically stable if 

𝑅𝐹 < 1 and is unstable if otherwise i.e. if 𝑅𝐹 > 1.  

The local stability of the disease-free equilibrium implies that the disease will not break out in the 

population while the instability of the disease-free equilibrium implies that the outbreak of the disease is 

imminent and inevitable. The existence of stability or instability of the disease-free equilibrium of the model 

shall be established by solving the characteristic equation of the Jacobian matrix of the model at the disease-

free equilibrium, 𝐷0  i.e. eqn. (19). If all the eigenvalues of the characteristic equation are less than zero 

then the disease-free equilibrium of the model is locally asymptotically stable but if otherwise, the disease-

free equilibrium of the model is unstable.  

 Proof 3. 

The Jacobian matrix of the model system (1) – (3) evaluated at the disease-free equilibrium i.e. eqn. (19) is 

given as 

𝐽𝑑𝑖𝑠𝑒𝑎𝑠𝑒−𝑓𝑟𝑒𝑒 =  

(

 

−(𝜇 +𝑚1) −𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
0

0 𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
− (𝑚2 + 𝛿 + 𝜇) 0

𝑚1 𝑚2 −𝜇)

       (22) 

 

The characteristic equation of the above matrix has the eigenvalues 

𝜆1 = −𝜇,  𝜆2  = −(𝜇 +𝑚1) and 𝜆3   =  𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
− (𝑚2 + 𝛿 + 𝜇) 

Obviously, all the eigenvalues are less than zero if 𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
< (𝑚2 + 𝛿 + 𝜇) 

Hence, the disease-free equilibrium of the model is locally asymptotically stable if 𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
<

(𝑚2 + 𝛿 + 𝜇) otherwise, it is unstable. The inequality 𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
< (𝑚2 + 𝛿 + 𝜇) is true if 𝑅𝐹 < 1  

3.4         Global Stability of the Disease-Free Equilibrium 

Local stability of a system investigates what happens to the equilibrium of the system on a small scale. The 

equilibrium of a system is restored only if some restrictions put the system around the equilibrium for local 

stability. Global stability, on the other hand, establishes what happens to the equilibrium of a system on a 

large scale when there is no restriction on the initial conditions of the model variables. The equilibrium is 

always restored and the solutions of the model approach the equilibrium for all initial conditions under 

global stability. While local stability analysis of a system restricts the analysis of the system to the region 

near the equilibrium point, global stability analysis of the system enables the analysis to be extended beyond 

only small region near the equilibrium. The global stability analysis of a model can be conducted by a 

number of methods which include among others the Lyapunov theorem and Castillo-Chavez global stability 

theorems. However, the former shall be used in this work. 
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Theorem 3: If  𝑅𝐹 < 1, the disease-free equilibrium, 𝐷0 of the system is globally asymptotically stable in 

 .     

Proof 4: 

 𝛽 is dropped in eqn. (1) since it does not contain a variable which reduces eqns (1) – (3) to   

 

1

2

2

1

= (1 )

= (1 )
1

1

dS
IS S S

dt

IdI
IS I I

dt I

IdR
S R

dt I

m

m

m
m

  

   




    




    
 


  

 



 (23) 

 Given the linear Lyapunov function L  as  

 1 2 3( , , ) =L S I R b S b I b R   (24) 

 where  𝑏1  > 0, 𝑏2  > 0,   𝑏3  > 0, 𝑏1 − 𝑏2  > 0 and  𝑏2 − 𝑏3  > 0                                 (25)   

The derivative of L  w.r.t t  is  

 
1 2 3=

dL dS dI dR
b b b

dt dt dt dt
   (26) 

Our aim is to show that 
𝑑𝐿

𝑑𝑡
 < 0  ∈   to establish that 𝑅𝐹 < 1  

This is the necessary and sufficient condition for the disease-free equilibrium to be globally asymptotically 

stable. 

Substituting eqn. (23) into eqn. (26) to obtain  

 

 

 

 

  



Ayoade et.al. Malaysian Journal of Computing, 4 (1): 201-213, 2019 

 

210 

 

 

 

1 1

2
2

2
3 1

1 2 1 31 1

2
1 2 2 3

3

= ( (1 ) )

(1 )
1

1

= (1 )(b ) I ( )

(1 )(b )S (b ) ( )
1

dL
b IS S S

dt

I
b IS I I

I

I
b S R

I

b b b S

b b I
I

b R

m

m

m
m

m m

m

  

   



  

   



   

 
     

 

 
   

 

       

 
       

 



 (27) 

Expressing (1 − 𝜃) in terms of 𝑅𝐹 in eqn. (20) and put the result in eqn. (27) to have                

     

       

 

1 2 1 2 1 1 3 1

2

1 2 1 2 2 3

3

1
=

1

1

F

F
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         

  



             (28) 

Since the system monitors living population then all the parameters as well as variables are non-negative. 

Also < 1FR  does not imply negative value for FR
.
 Hence, from eqn. (28) and by following the 

conditions in inequality (25) 
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 Therefore, inequality (29) establishes that  < 0
dL

dt
 in    as required to be proved. Moreover,  = 0

dL

dt
 if 

0= 0,= 0,= RIS  in eqn. (28). Hence, the maximum invariant set in    
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( , , ) : = 0
dL

S I R
dt

 
 
 

  is the singleton  
0D   . By LaSalle’s invariance principle as in Bowong et al. (2011),  

0D   is globally asymptotically stable in the invariant region     where  
0D   is the disease-free equilibrium 

of the model 

4.0   Results 

We shall verify the stability condition of the disease-free equilibrium that was proved in subsection 3.3. It 

was stated that the disease-free equilibrium of the model is locally asymptotically stable if 𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
<

(𝑚2 + 𝛿 + 𝜇). By using the parameters values in table 1, the numerical value of 𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
  is 1.07 × 10−11 

while the numerical value of (𝑚2 + 𝛿 + 𝜇) is 1.02. Hence, the inequality 𝛼
(1−𝜃)𝛽

(𝜇+𝑚1)
< (𝑚2 + 𝛿 + 𝜇) is true 

and the disease-free equilibrium of the model is locally asymptotically stable. In order to investigate the 

expected number of new cases of rabies in the population when the interventions are not on ground and 

when they are on ground, the values of the transmission and intervention parameters in table 1 shall be 

varied to examine the effect of changes in these parameters on the threshold quantities bearing in mind that 

the analytical results for
FR and 

0R  are given by equations (20) and (21) respectively. The results of the 

analysis are presented in table 2. 

Table 2: The Impact of variations in the values 𝜶, 𝜽, 𝒎𝟏 and   𝒎𝟐 on 𝑹𝟎  and  𝑹𝑭 

 

The disease-free equilibrium point and the endemic equilibrium point are shown to be locally and globally 

asymptotically stable. The interpretation of this is that globally, the outbreak of rabies could be averted 

under the conditions imposed by the model. As regards simulation results, from Table 2, it is observed that 

increase in the disease transmission parameter 𝛼 has negative influence on both threshold quantities 𝑅0  and  

𝑅𝐹  though the influence on 𝑅𝐹 is minimised by the accompanying increase in the intervention parameters 

𝛼 𝛽 𝜇 𝛿 𝑅0 𝜃 𝑚1 𝑚2 𝑅𝐹 

0.00000000229 0.0314 0.0066 1 1.08* 10−8 0.001 0.0001 0.01 1.01* 10−11 

0.000000229 0.0314 0.0066 1 1.08* 10−6 0.01 0.001 0.03 9.13* 10−9 

0.0000229 0.0314 0.0066 1 1.08* 10−4 0.05 0.005 0.08 2.85* 10−6 

0.00229 0.0314 0.0066 1 1.08* 10−2 0.1 0.01 0.1 3.91* 10−4 

0.229 0.0314 0.0066 1 1.08 0.5 0.05 0.5 0.04 

0.4 0.314 0.0066 1 1.89 0.8 0.1 0.8 0.05 

0.5 0.314 0.0066 1 2.36 0.9 0.5 0.9 0.01 
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𝜃, 𝑚1 and   𝑚2. The increase in the disease transmission rate up to certain level (Row 6 downward) results 

in outbreak of rabies when there is no control (i.e. 𝑅0) whereas, the outbreak is well inhibited with the 

presence of interventions (i.e. 𝑅𝐹). The interpretation of the result is that outbreak of rabies is possible if 

there is negligence towards its prevention and control. The negligence has accounted for many rabies deaths 

in Africa where ignorance co-exists with poverty and poor healthcare delivery. The graphical illustrations 

are presented in Figures 2 and 3 to support Table 2 and to show the effects of the parameters considered on 

the overall transmission dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Rabies incidence with interventions                                               Fig 3. Rabies incidence without interventions 

 

5.0         Conclusion 

In the study, we formulate a simple deterministic compartmental mathematical model with saturated 

incidence rate to assess the possibility of reducing rabies death to zero. The basic properties of the epidemic 

models in terms of the boundedness and positivity of solutions are investigated for our model and we 

establish that the model is positive for all positive values of initial conditions. Besides, in the absence of 

rabies, the population tends to the carrying capacity. We conduct the equilibrium analysis, stability analysis 

and derive the reproduction numbers. We establish that both the disease-free equilibrium point and the 

endemic equilibrium point are locally and globally asymptotically stable. We carry out numerical 

simulations to verify the theoretical results and the results of the simulations are discussed. For a disease 

like rabies whose tendency of defying treatment is almost 100% (Ruan, 2017), we conclude that general 

awareness together with the availability of mechanism to detect infected individuals at the latent stage is 

the basis for global eradication of the disease. 
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