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 ABSTRACT 

Financial Times Stock Exchange (FTSE) Bursa Malaysia Kuala Lumpur Composite Index 
(KLCI) is made up of over 30 large companies listed on the Bursa Malaysia Main Market. All 
FTSE Bursa Malaysia data are calculated and disseminated every 15 seconds in real-time. It 
is believed that the volatility of the stock market has a negative impact on real economic 
recovery. This paper aims to describe the underlying structure and the phenomenon of the 
sequence of observations in the series. The information obtained, can determine the 
performance of time series model to fit the data series from January 2002 until December 
2018. Autoregressive Integrated Moving Average (ARIMA) and Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) models have been shown to provide the correct 
trend of volatility. The objectives of this paper are to determine the overall trend of the KLCI 
stock return and to investigate the performance of Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) and Autoregressive Integrated Moving Average (ARIMA) based 
on KLCI stock return. Root Mean Square Error (RMSE) and Mean Absolute Percentage 
Error (MAPE) have been chosen to be used in this paper to measure accuracy. The results 
show that the best ARIMA model is ARIMA(1,1), while for the GARCH model, it is 
GARCH(1,1). 
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1. Introduction  

Bursa Malaysia Kuala Lumpur Composite Index (KLCI) Financial Times Stock Exchange 
(FTSE) consists of over 30 big businesses listed on Bursa Malaysia Main Market. All big 
companies have completed market capitalization that meets the eligibility criteria of the FTSE 
Bursa Malaysia ground regulations (FTSE Russell, 2018). Based on a weighted value 
formula, the data is calculated and adjusted by a free float factor, using Bursa Malaysia's real 
time values and closing prices. Policy makers are interested in the impacts of volatility on 
actual activity, while the market participants are worried about the impacts of stock market 
volatility on asset pricing. At the same time, the KLCI index time series also retains the 
historical motions of the Malaysian stock market. 
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2. Methodology 

2.1 The Data Set 

This study uses secondary data obtained from Yahoo Finance through its website 
(https://finance.yahoo.com). The data consists of the numbers of stock returns in Malaysia 
from January 2002 to December 2018. Since, the annual time series data used with the model 
would favourably generate better outcomes with quarterly or monthly numbers where 
information can be easily obtained, this study uses monthly data.   

2.2 Time Series Models 

Data containing collection of information that generally takes place at standardized periods is 
recognized as Time Series data by a model of successive quantitative data pairs (Kenton, 
2018). Time series forecasting is a system that predicts potential outcomes depending on 
current established characteristics (Brownlee, 2017). This is linked to the research conducted 
in China by Chen & Pan (2016) and in Korea by Han et al. (2015). The stock market 
behaviour could have an impact on investments equity as a consequence of elevated stock 
market volatility. Due to this, shareholders face a strong investment risk, no matter how big it 
may be at a comparable moment. 

2.2.1 GARCH Model 

GARCH model is one of the heteroscedasticity model, where there is an absence of constant 
variance in the model. This is an upgraded Autoregressive Conditional Heteroscedasticity 
(ARCH) model by Bollerslev in 1986, which included a word "smoothing-averaging" to 
create a more parsimonious specification. But both models have considered clustering 
volatility and forecast time - varying high - frequency financial data as important elements 
(Islam, 2013). GARCH model should be written as GARCH (q, p) model where q is the 
moving average number (MA) and p is the autoregressive number (AR). It is possible to 
follow the general GARCH (q, p) model based on the equation below. 

                                                             (1) 

where    

µ is smooth underlying process, is known as the apparent irregularities in the process or 
mainly known as noise. Meanwhile,       
           

                                               (2)    

 
where ht represents conditional variance, ht−i represents past conditional variance, e² t−i past 
squared residual return and a > 0, bi ³ 0, yi ³ 0.  
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2.2.2 Box-Jenkins ARIMA Model 

These models are combination of Autoregressive Moving Average (ARMA) and ARIMA 
(Sivakumar & Mohandas, 2009). ARIMA model is one of the statistical models for analysing 
and forecasting time series data. A standard notation is used for ARIMA (p, d, q) where the 
parameters are rapidly substituted by integer numbers to show the particular model used for 
ARIMA. The parameters of ARIMA model shows ‘p’ as the number of lag observations 
included in the model (AR), ‘d’ as the number of times that the raw observations are different 
(I) and ‘q’ as the size of the moving average window (MA). With the specified number and 
type of terms, a linear regression model is constructed, and the data are prepared by a degree 
of differencing to make them stationary, instantly removing trend and seasonal structures that 
negatively affect the regression model. To fulfil the assumption of ARIMA models, the data 
variance should be constant. A general ARIMA equation (p, d, q) model such as ARIMA 
(1,1,1) is written as: 

                                                (3) 

where  represents the first differences of the series and is assumed stationary.  
In this case, the values of p=1, d=1 and q=1. 

2.3  Unit Root Test Procedure  

The non-stationary of a series can be determined by either a simple observation of the plotted 
data or more accurately by using statistical test procedure. In this paper, the Augmented 
Dickey-Fuller test (ADF) procedure is most commonly used. The ADF test is performed by 
using the model: 

                                                                     (4)  

where J is the number of lags for with with and t is the time variable.  
Normally, J is chosen small in order to save the degree of freedom but is large enough to 
ensure that is white noise, where is identically and independently distributed with mean 

zero and variance . The hypothesis testing of ADF is to examine whether there is an 
existence of unit root (not stationary) or stationary. If the data are not stationary, they must be 
transformed by using the first difference. The first difference is the data changed from one 
period to the next one. By plotting the first differencing to data, it could reveal whether the 
data have been transformed into stationary series or not. If the data are still not stationary after 
the first differencing, the second differencing is required.    

2.4  Model Performance 

Akaike Information Criterion (AIC) is used to select the best model fitting when value of AIC 
is smaller. AIC is described as shown, 

																											 		 	 	 																	(5) 
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where  is the set (vector) of model parameters,  is the likelihood of the candidate 
model given when the data are evaluated at the maximum likelihood estimate of  and  is 
the number of estimated parameters in the candidate model. The Bayesian Information 
Criterion (BIC), proposed by Schwarz is also known as the Schwarz Information Criterion 
(SC). The difference between the BIC and the AIC is that the former imposes a greater 
penalty than the latter for the number of parameters. BIC, on the other hand, is defined as 
follows: 

                                                                        (6) 

where  is the set (vector) of model parameters,  is the likelihood of the candidate 
model given when the data are evaluated at the maximum likelihood estimate of  and  is 
the number of estimated parameters in the candidate model. One of the primary aims of 
forecasting is to estimate potential outcomes using the correct technique. The precision of the 
predictive model is often evaluated by calculating the predictive precision criteria. RMSE and 
MAPE are often used to measure accuracy. It is outlined as: 

  

                                   	 	 																																(7) 

and   

																																							 																																																																				(8) 

where  is the actual value,  is the forecast value and  is the number of period. The 
better model can be defined by the smaller values of RMSE and MAPE. 

3. Results 

The results from Figure 1 focuses on the stock price of KLCI. There had been a slight 
increase at the beginning of 2002 until the end of 2007 with 1393.25 levels. However, the 
stock market collapsed at the beginning of 2008 with 1357.400 levels until the first quarter of 
2009 with 990.740 levels. After that period, the composite index rose up until 2018 with 
1683.530 levels. The side way pattern started at the beginning of 2014 until the end of 2018. 
On the day this report is written, the KLCI has dropped at 1631.810 levels. 
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Figure 1. KLCI from January 2002 to December 2018. 

Furthermore, trend components have been found to exist in the data series. However, no 
irregular, seasonal and cyclical components exist along the lines. In this graph, the data set is 
seen as volatile when fluctuations occurred at around 600 levels to 1500 levels from 1/1/2002 
until 1/1/2012 where the trend component could clearly be seen. However, starting from 
1/1/2012 until 9/1/2018, the trend still exists but the fluctuation of the data set ranges from 
1400 levels to 1800 levels.   

3.1  Analysis of ARIMA Model 

3.1.1 Data Investigation 

The data consists of 204 observations starting from January 2002 until December 2018. The 
estimation part consists of 144 observations and 60 observations were from the evaluation 
part. 

Table 1 and Figure 2 show the composite index has a unit root. It can be seen that the 
data are not stationary since the probability value of Augmented Dickey-Fuller Test in Table 
1 is 0.6076 which is more than the value of alpha, 0.05. This indicates that the non-seasonal 
differencing needs to be done to achieve stationary condition. Meanwhile, the graph in Figure 
2 is a correlogram that shows observations which have large value of ACF and the pattern has 
slowly disintegrated. Moreover, PACF has one significant spike at lag 1. The probability of 
all observations has a significant value which is less than 0.05. 

 

Table 1: The Unit Root Test of The Original Data. 

 t-statistic Prob.* 
Augmented Dickey-Fuller test statistics -1.346619 0.6076 
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Figure 2. Original data close for KLCI. 

 
3.1.2 Performing Non-Seasonal Differencing 

Non-seasonal differencing is used to get the stationary condition. So, differencing would be 
used to remove systematic pattern or trend components from the data. Moreover, the non-
seasonal differencing not only can form first order differencing, but it could also be run 
repeatedly until data are stationary. 

Table 2 shows the data are already stationary after the first order of differencing. It is 
seen on the Augmented Dickey-Fuller test statistics. The probability is 0.000 which is less 
than the value of alpha, 0.05. In the correlogram in Figure 3, the value of ACF is small. 
Meanwhile, the PACF has one significant spike at lag 10. Therefore, identifying the models 
involved can be done by computing the sample PACF, p and ACF, q. ARIMA model is 
denoted by ARIMA (p, d, q). In the order of differencing, d is equal to 1 taking the first 
difference of the series. The corresponding value of p is 1 and the value of q is 1. To obtain 
the parameter values for each model, EViews software is used.  

 

Table 2: The Unit Root Test After 1st Log Differencing. 

 t-statistic Prob.* 
Augmented Dickey-Fuller test statistics -13.04413 0.0000 
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Figure 3. Original Data after First Differencing. 
 
3.2 Analysis of GARCH Model 

3.2.1  Data Investigation 

Since KLCI data are not stationary, first differencing of the data is needed. For the line graph 
and histogram, the differencing levels were plotted from GARCH model. GARCH model can 
only be used when the data are volatile. Figure 4 shows the histogram for Kuala Lumpur 
Composite Index data at first differencing level. 

 

 
 

Figure 4. The line graph for volatility clustering. 
 
The line graph shows that the data of KLCI had volatility in the year 2008. This is supported 
with a histogram and descriptive analysis in Figure 5. 
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3.2.2  Histogram for First Differencing Level of KLCI  

The value of kurtosis for this analysis is 5.825304 which is more than 3 and skews to the left. 
From the output above, the maximum value is 12.70322 and the minimum value is -16.51417. 
The average for this series is 0.426069 with a standard deviation of 3.634473. The next step is 
to identify the model involved by computing the sample PACF, p and ACF, q. GARCH 
model is denoted by GARCH (q, p). The corresponding values of p and q are 1 and 2.  

 

 

 
Figure 5. Histogram for KLCI at first difference level. 

3.3  Error Comparison in Evaluation Part 
 
3.3.1  Comparison between ARIMA Models 

Evaluation part is used to compare the performance of all the ARIMA models. The models’ 
performance used are AIC, SC and a number of significant variables. In order to compare the 
ARIMA models more efficiently, the error estimations values such as RMSE and MAPE are 
analysed. 
 

Table 3. Error Comparison for ARIMA Models. 

Model AIC SC 
Error Estimation 

RMSE MAPE 

ARIMA (1,1,1)  10.33554 10.44026  40.37255 1.714587 

ARIMA (1,1,2) 10.32155 10.46118 39.40413 1.6674668 

ARIMA (2,1,1) 10.33962 10.47924 39.77525 1.679706 

ARIMA (2,1,2) 10.35449 10.52902 39.39671 1.667382 
ARIMA (3,1,2)  10.38685 10.59628 39.37660  1.662223 

 

Table 3 shows the values of all the statistical measures. The AIC and SC show almost the 
same figures. Hence, RMSE and MAPE were obtained to compare the errors between models 
and to find the least value of error. The AIC, SC, RMSE and MAPE show almost the same 
figures for each model. The number of significant variables and the variables involved are 
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considered to determine that ARIMA (1,1,1) as the best model since ARIMA (1,1,1) contains 
1 out of 2 variables is significant. 

3.3.2  Comparison between GARCH Models 

Further analysis was done to compare with the GARCH models as shown in Table 4. The 
AIC, SC, a number of significant variables and also the error estimations were used to achieve 
the objectives. The lowest AIC and SC is identified for GARCH (1,1). The value of RMSE 
for GARCH (1,1) is 40.90108 and value of MAPE is 1.647338. Hence, GARCH (1,1) was 
chosen as the best model after considering all the statistical values and conditions. 
 

Table 4. Error Comparison for GARCH Models. 

Model AIC SC 
Error Estimation 
RMSE MAPE 

GARCH (1,1)  10.06112 10.23565  40.90108 1.647338 
GARCH (1,2) 10.17556 10.38500 40.73866 1.648611 
GARCH (2,1) 10.13362 10.34305 40.29174 1.658468 
GARCH (2,2) 10.12522 10.36957 40.85229 1.644913 
GARCH (3,2) 10.20034  10.30957  40.33413 1.657629 

4. Conclusion 

Overall, the KLCI stock return in Malaysia from January 2002 until December 2018 shows a 
tendency towards skewness. This paper is carried out to determine the overall trend on KLCI 
stock return by using two models which are GARCH and ARIMA. The time series data 
consists of 204 observations and it is divided into estimation and evaluation part. Based on 
the findings of this study, that is, by dividing into estimation part which consists of 144 
observations and evaluation part consisting of 60 observations for both models, it shows that 
for the evaluation part, the best model for ARIMA is ARIMA (1,1,1). Meanwhile, for 
GARCH, the best model is GARCH (1,1).  
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