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ABSTRACT 

This paper presents the stability analysis of a proposed scheme of order five (FCM) for first 

order Ordinary Differential Equations (ODEs). The proposed FCM is derived by means of an 

interpolating function of polynomial and exponential forms. The properties of FCM were 

discussed extensively. The linear stability of FCM in the context of the Third Order One-Step 

Method (TCM) and Second Order One-Step Method (SCM) for the solution of initial value 

problems of first order differential equations is presented. The stability region of FCM, TCM 

and SCM is investigated using the Dahlquist’s test equation. The numerical results obtained 

via FCM are compared with TCM and SCM. Moreover, by varying the step length, the accuracy 

and convergence of the methods in terms of the final absolute relative error are measured. The 

results show that FCM converges faster and more stable than its counterparts.   

Keywords: Fifth order scheme, final absolute relative error, initial value problem, second order 

method, stability, third order method.   
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1. Introduction  

Most of the problems of mathematical physics are formulated in the form of differential 

equations. Such physical models represent future estimation for any real-world situation based 

on the data available in the past and present as detailed in (Bird, 2017; Butcher, 2016; Jain, 

2003; Lambert, 1991; Lambert, 1973). It is a known fact that a huge number of differential 

equations that model real life problem cannot be solved via well-known analytical methods. In 

such situations, one has to compromise at numerical approximate solutions of the models 

achievable by various numerical techniques of different nature (Qureshi & Fadugba, 2018). 

In this paper, the stability analysis of FCM in the context of TCM (Fadugba & Idowu, 

2019) and SCM (Fadugba & Falodun, 2017) is presented and investigated. The rest of the paper 

is outlined as follows; Section Two presents the problem formulation and derivation of FCM. 

Section Three presents a brief review of two existing methods: TCM and SCM. The stability 

analysis of the methods is examined in Section Four. Section Five presents implementation of 

FCM, discussion of results and concluding remarks. 
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2. Problem Formulation and Derivation of the One-Step Scheme of Order Five 

2.1 Problem Formulation 

Consider an initial value problem of first order ordinary differential equation of the form: 

),(],,[)(),,( 0 −== ybaxyayyxfy
 

  (1) 

The existence and uniqueness of solution of (1) have been guaranteed via the Lipschitz 

condition on the interval D = [a, b].  The exact solution of (1) at nxx =

 

is given by )( nxy . 

2.2 Derivation of a Fifth Order One-Step Scheme 

Consider an interpolating function of the form: 

c
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(2) 

here 6543210 ,,,,,,  are undetermined constants and c is a constant. The integration 

interval of ],[ ba is defined as bxxxa n == 0 . The step length is defined as:  

N

ab
h

−
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  (3) 

where N is the number of integration steps. The mesh point is defined as:  

1,...2,1,0,)1(01 −=++=+ Nnhnxxn  
  (4) 

or 

Nnnhxxn ,...2,1,0 =+=
 

  (5) 

Expanding (2) at the points nx and 1+nx yields: 
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respectively. Differentiating (6) five times and setting:  
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Equations (9)-(13) form a system of linear equations of the form: 

bAX =  (14) 

where, 
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Solving the system of linear equations in (14), one gets: 
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Subtracting (6) from (7) yields: 
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Using (4) and (5), with 00 =x , yields: 
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Using (24) into (18), (19), (20), (21) and (22) yield: 
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Suppose that: 
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By using (23), (31), (32), (33), (34) and (35), (36) yields: 
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Equation (43) is known as FCM for the solution of initial value problems of ordinary differential 

equations. The local truncation error, order of accuracy, consistency, zero stability and 

convergence of (43) were summarized in the following remarks. 

Remarks: 

a. Local Truncation Error and Order of Accuracy 

According to Fadugba & Idowu (2019), the analysis of the local truncation error determines the 

order of convergence of any numerical integration method designed for the numerical solutions 

of initial value problems in ordinary differential equations. In order to check the order of the 

method, the algorithm of the numerical method is subtracted from the Taylor’s series expansion 

for )( nxy in powers of h and by means of the localizing assumptions.  
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Consider the Taylor’s series expansion of the form: 
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Define the local truncation error for (43) as: 
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Substituting (43) and (44) into (45) yields: 
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Simplifying further and using (38), (39), (40), (41) and (42), one gets: 
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By means of the localizing assumptions, (48b) yields: 
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By using (48a) and (49), (47) becomes: 
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Equation (50) is the local truncation error for FCM. It also shows that the scheme has accuracy 

of order five.  
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b. Consistency of the Scheme 

The proposed scheme is consistent, since: 

a)  It has fifth order accuracy. 

b) 0
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c. Zero Stability of the Scheme 

A linear multistep method of step k = 1 is said to be zero stable if the roots of the first 

characteristic polynomial of the method given by 
10
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satisfy the 

Dahlquist’s root condition: 

i) all roots r satisfy 1a  

ii) multiple roots r satisfy 1a  

 

From (43), α1 = 1 and α0 = -1 were deduced, then the characteristic polynomial is obtained as: 

Q(a) = a-1

 

(53) 

Therefore, 

Q(a) = 0   a - 1 = 0   a = 1   

 

(54) 

Since the root of (54) satisfies the Dahlquist’s root condition. Hence, it is concluded that the  

scheme is zero stable. 

d. Convergence of the Scheme     

The convergence of the scheme is discussed as follows. From (43), the increment function is 

obtained as: 
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Subtracting (56) from (55), one gets: 
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Define nŷ  as a point in the interior of the interval whose end points are ny and ny . Using the 

Mean Value Theorem (MVT), one obtains: 
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Using (63), (58)-(62) become: 
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Substituting (64)-(68) into (57), yields: 
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Taking the absolute value of (69), one obtains: 
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Setting L = A + RB + SC + TD+ UE, therefore: 
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Hence, the scheme (43) is convergent and    is Lipschitzian.  
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3. A Brief Review of TCM and SCM 

The brief review of TCM (Fadugba & Idowu, 2019) and SCM (Fadugba & Falodun, 2017) are 

detailed as below. 

3.1 A One-Step Method of Order Three (TCM)  

A third order one-step method for the solution of (1) given by: 
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where 3210 ,,,   are undetermined constants. 

3.2 A One-Step Method of Order Two (SCM)  

A second order one-step method for the solution of (1) given by: 
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where 210 ,,   are undetermined constants. 

4. Stability Analysis of the Scheme 

According to Fadugba & Qureshi (2019), a numerical method is said to be stable if it is capable 

of damping out the small fluctuations carried out in the input data. The notion of stability may 

be taken in different contexts: it may be associated with the specific numerical technique used, 

or the step size h used in numerical computations or with the particular problem being solved. 

To discuss the stability analysis of FCM in the context of TCM and SCM, consider the 

Dahlquist’s test equation given by: 

0,1)0(, ==  yyy  (76) 

where  is a complex constant.  

The exact solution of (76) is obtained as: 
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Expanding (77) at the points nxx =  and 1+= nxx , yields respectively: 
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By means of (5), (43), (78) and localizing assumptions, the numerical approximation is obtained 

as: 
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Equation (80) becomes: 
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It is clearly seen that (82) is the sixth term of 
he
. Hence the stability function of (43) requires 

that: 

1  (83) 

The error growth factor can be controlled by (83). Also setting hz = in (82) and simplifying  

further, the stability region of the scheme satisfies: 
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The stability functions of FCM, TCM and SCM using Dahlquist’s Test Equation are 

summarized in the Table 1.  
 

Table 1. The stability functions for FCM, TCM and SCM using Dahlquist’s Test Equation 

Method Stability Function 

FCM 
1202462

1
5432 zzzz

z +++++  

TCM 
62

1
32 zz

z +++  

SCM 
2

1
2z

z ++  

 

The stability regions for the stability functions as in Table 1 represented in unshaded area for 

FCM, TCM and SCM are displayed in Figure 1, Figure 2 and Figure 3 respectively. 
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Figure 1. The Stability Region (Un-shaded) for FCM 

 

 

 
Figure 2. The Stability Region (Un-shaded) for TCM 
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Figure 3. The Stability Region (Un-shaded) for SCM  

 

5. Implementation of the Scheme, Discussion of Results and Concluding Remarks 

This section presents an illustrative example, discussion of results and conclusion as follows: 

5.1 Implementation of the Scheme on Initial Value Problem of First Order Ordinary 

Differential Equation 

Consider the initial value problem of the form: 

,1)0(, == yyy  

whose analytical solution is obtained as:    
xexy =)( . 

The comparative study of the results generated via FCM, TCM and SCM against exact solution 

('YXN') in the interval of integration ]2,0[x with h = 0.1 is shown in Figure 4. 

 
Figure 4. The Comparative Study of the Results generated via FCM, TCM and SCM 
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Figure 5. The Comparative Study of the Absolute Relative Errors Incurred via FCM, TCM and SCM 

 

The comparative study of the absolute relative errors generated via FCM, TCM and SCM in 

the interval of integration ]2,0[x with h = 0.1 is shown in Figure 5. The comparative study 

of the final absolute relative errors generated via the FCM in the context of TCM and SCM by 

varying the step length h = with ]1,0[x  is shown in Table 2. 

 
Table 2. The Comparative Study of the Final Absolute Relative Errors generated  

via FCM, TCM and SCM with varying Step Length (h). 

 

h FCM TCM SCM 

2-1 0.00007701 0.01729036 0.13734107 

2-2 0.00000298   0.00276121 0.04397290 

2-3 0.00000010 0.00039062 0.01247877 

2-4 0.00000000 0.00005196 0.00332373 

2-5 0.00000000 0.00000670 0.00085754 

2-6 0.00000000 0.00000085 0.00021778 

2-7 0.00000000 0.00000011 0.00005487 

2-8 0.00000000 0.00000001 0.00001377 

2-9 0.00000000 0.00000000 0.00000345 

2-10 0.00000000 0.00000000 0.00000086 

The plots of Table 2 are displayed in Figure 6. It can be observed that the SCM produced the 

highest absolute relative error as compared to TCM and FCM. 
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Figure 6. The Final Absolute Relative Errors using Table 2 

5.2 Discussion of Results and Concluding Remarks 

In this paper, the stability analysis of FCM in the context of TCM and SCM for first order 

ODEs is presented. The stability functions for FCM, TCM and SCM are captured in Table 1 

using the Dahlquist’s test equation. The stability regions of FCM, TCM and SCM were plotted 

in Figure 1, Figure 2, and Figure 3 respectively. The comparative study of the results generated 

via FCM, TCM and SCM is presented in Figure 4. It is clearly seen from Figure 4 that FCM 

performs better than TCM and SCM. It is observed from Figure 5 that the absolute relative 

error curve of FCM shows that the scheme follows the curve of the exact solution elegantly.  

By varying the step length (h), the accuracy and convergence of the FCM, TCM and SCM in 

terms of the final absolute relative errors are shown in Table 2. It is also observed from the 

Figure 6 that FCM is more stable and converges faster to the exact solution than its counterparts 

for every first order decrease in the step length. Hence, FCM is a good approach to be included 

in the class of explicit one-step methods for the solution of initial value problems in ODEs. 

Finally, all the computations were carried out with the aid of MATLAB R2014a, 8.3.0.552, 32 

bit (win 32) in double precision. The methodology can be extended for the solution of higher 

order ordinary differential equations. 
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