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ABSTRACT 

The emergence of the first coronavirus disease 2019 (COVID-19) case in Malaysia has 
increased the number of infected cases. Hence, this study proposes a Susceptible-Infected-
Recovery (SIR) epidemiological model of the COVID-19 epidemic to portray the outbreak's 
situation. The SIR model is numerically solved using the Fourth-order Runge-Kutta (RK4) 
method in Matlab®. The Euler method verifies that the graphical results of the SIR model are 
reliable and valid. In addition, this study analyses the stability of disease-free and endemic 
equilibriums of the SIR model by the Jacobian matrix. The results show the outbreak for 
phase 1 occurs in the first 100 days of the phase due to the increased infected cases in early 
March 2020. As for phase 2, the increases of infected cases in wave 2 make the outbreak 
occur throughout phase 2, with 0R  being higher than phase 1. The infected population for 
phase 3 shows asymptotic behavior even though the infection rate increases, but the recovery 
rate is much higher than in phase 2. The local stability of the endemic equilibrium of all 
phases exists since the value of 0R  is more than one. The system is locally asymptotic stable 
for all three phases since the obtained eigenvalues are real and negative. 
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1. Introduction  

A coronavirus is a large group of viruses that consist of genetic material surrounded by an 
envelope of protein spikes. Based on research by Kahn and McIntosh (2005), the first 
coronavirus was discovered and characterized by Tyrrell and Bynoe in 1965 when they found 
the coronavirus in human embryonic tracheal organ cultures obtained from the respiratory 
tract of an adult who had a common cold. In December 2019, one of the largest cities in the 
central part of China had brought the world's attention to the outbreak of atypical pneumonia 
caused by the zoonotic 2019 novel coronavirus (2019-nCoV).  

Since the breaking news of the outbreak of 2019 novel coronavirus (2019-nCoV) in 
Wuhan happened, many researchers from different fields such as the National Health 
Commission, World Health Organization, mathematicians and medical experts have explored 
and studied the coronavirus issues in order to figure out the effectiveness and efficiency of 
interventions and recovery ways in decreasing the spread of the outbreak. On 31 January, 
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2020, Wu et al. (2020) published their research on inferring the number of infections in 
Wuhan by using the data from 31 December, 2019, to 28 January, 2020. They also forecasted 
the national and global growth of 2019-nCoV and predicted the effect of Wuhan's 
metropolitan-wide quarantine and surrounding cities. The outbreak of the disease had spread 
in China and to other countries, including Malaysia. 

According to WHO Country Office in Malaysia, the first case of COVID-19 in 
Malaysia was detected on 24 January 2020. Within 3 few weeks, Malaysia had recorded the 
largest confirmed cases of COVID-19 infections in Southeast Asia. By 16 March, every state 
in the country had reported cases. The partial lockdown was imposed on 18 March. During 
the 2020 Movement Control Order (MCO) implementation, all movements and mass 
assembly across the country are prohibited immediately. 

Even after the local government introduced strict restrictions and appropriate 
prevention policies to control the spread of the virus within a community, COVID-19 has 
been growing fast in Malaysia and has become a public health threat. Thus, it is crucial to 
understand the severity of this outbreak. Various methods and techniques have been 
highlighted to describe the severity of the problem and resort to the solution for this pandemic 
(Ariffin et al., 2020; Ming et al., 2020; Shao and Shan, 2020; Wu et al., 2020). One of them is 
the Susceptible-Infectious-Recovered (SIR) model. The SIR model has divided the human 
population into three compartment classes: susceptible individuals, infected individuals, and 
recovered individuals from the disease. In the early twentieth century, the SIR model was 
developed by Ronal Ross and William Hamer in the early 20th century, which consists of a 
system of three coupled non-linear ordinary differential equations. Kermack and McKendrick 
were the SIR model pioneer who established their article on the “Applications of mathematics 
to medical problems” (Bacaer, 2011).  

Many researchers have used the SIR model to study the spreading of various diseases. 
Several recent studies on SIR model for COVID-19 in Malaysia can be found in Wong et al. 
(2021), Salman et al. (2021), Ariffin et al. (2020), Law et al. (2020), Mahmud & Lim (2020), 
and Arifin et al. (2020), focusing on simulation of infectious trend in order to understand the 
dynamical behaviour of the SIR model in Malaysia. However, this study analyzes the 
infectious trend using actual data from 1 Mac 2020 until 31 December 2020. The actual data 
of the infected and recovery cases are curve fitted and the value of R2 is determined. Both are 
calculated using the R software environment. 

Differential equations of the SIR Model can be solved numerically, mainly using the 
Runge-Kutta method. The Runge-Kutta method is one of the most widely numerical methods 
used by researchers such as Ashgi et al. (2021), Kovalnogov (2020), Lede & Mungkasi 
(2019), Hossain et al. (2017) and Side et al. (2018). The method invented by German 
mathematicians Carl Runge and Wilhelm Kutta   is a basic explicit method for numerical 
integration of differential equations. The fourth order Runge-Kutta (RK4) is preferably used 
since RK4 is more stable than the other order Runge-Kutta methods. Therefore, this method is 
ideal for solving a differential equation of the SIR model.  

Local stability analysis also plays an essential role in the SIR model to control the 
endemic disease spread. Analysing the stability of the disease-free equilibrium could also help 
identify whether the outbreak will demise or increase in the future. The stability of the 
disease-free equilibrium points could be obtained using the Jacobian matrices and the basic 
reproduction number, 0R . Egbetade et al. (2018) and Tahir et al. (2019) introduced their 
research on the local stability of disease-free equilibrium and endemic equilibrium of the 
dynamic of infectious disease in a population. Egbetade et al. (2018) used eigenvalues of the 
Jacobian matrix and basic reproduction number, 0R  to determine the local stability of the 
equilibrium point of the SIR model for tuberculosis, hepatitis B, malaria, typhoid, cholera, 
measles and smallpox. Tahir et al. (2019) implemented the next-generation matrix approach 
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to calculate a basic reproduction number, which determines the stability of the Ebola SIR 
model. 

Modelling the SIR model for the COVID-19 outbreak is an essential way to provide a 
most straightforward framework to analyze the spread of the disease within a community in 
Malaysia. This paper aims to investigate the SIR model of COVID-19 based on daily cases in 
Malaysia to illustrate this outbreak within the stipulated time. Hence, the stability conditions 
of the disease-free equilibrium and the endemic equilibrium are also analyzed. 

 
 

2.       Formulation of SIR model for COVID-19 

The human population can be divided into three components: the susceptible, the infected, 
and the fully recovered (Kermack & Kendrick, 1927). The system of the human population is 
presented in the compartment model, as shown in Figure 1. The model indicates some 
populations have been infected by the coronavirus disease 2019 (COVID-19) while others 
have not been infected yet. The increasing of susceptible groups will happen through the 
natural birth and fully recovered individuals who have lost their immunity. At the same time, 
the susceptible group also will decrease through the natural death and infectious group. The 
susceptible individual will acquire the COVID-19 infection through the connection with the 
symptomatic patients with show the symptoms of coronaviruses.  

 
Figure 1. Flowchart of the compartments of SIR model 

The dynamic of the human population for the SIR model of the COVID-19 in Figure 
1 is represented by the differential equations below 

( )

0

0 1

0

β
αΝ µ δ

β
µ µ γ

γ µ δ

= − − +

= − − −

= − −

c c
c c c

c c
c c c

c
c c c

dS I S S R
dt N

dI I S I I
dt N
dR I R R
dt

 (1) 

where, , , ,c c cN S I R represent the human population, the number of susceptible, the number of 
infected and the number of recovered individuals, respectively. All the variables are functions 
of time, t. The parameter α  is the natural birth rate population, β is the infectious rate, 0µ  is 
the rate of natural death, 1µ  is he rate of death caused by the disease, γ  is the recovery rate, 
and δ  is the rate at which recovered people become susceptible due to low immunity or 
health related issues. 
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Assume that the number of human populations, N is constant. Thus, the total 
population of human at t, can be described as 

= + +c c cN S I R  (2) 
Introducing dimensionless variables to normalize the system (1) as follows 

, ,= = =c c cS I RS I R
N N N

 (3) 
Therefore, the simplified model of the COVID-19 for the human population as 

( )

0

0 1

0

α β µ δ

β µ µ γ

γ µ δ

= − − +

= − − −

= − −

dS IS S R
dt

dI IS I I
dt

dR I R R
dt

 (4) 

where S, 1 and R are dimensionless variables for the number of susceptible, the number of 
infected and the number of recovered individuals, respectively. 

2.1 SIR Parameters 

Secondary data is retrieved from the Crisis Preparedness and Response Centre (CPRC) by the 
Ministry of Health Malaysia (KKM). The data retrieval period of the COVID-19 cases is 
dated from 1 March until 31 December 2020. 

 
Figure 2. The timeline of COVID-19 in Malaysia 

 

As shown in Figure 2, the analysis is divided into three phases:  Phase 1 consists of 
data before the implementation of MCO until the end of the recovery MCO period (1 March 



 

Mohd Idris et. al., Malaysian Journal of Computing, 7 (2): 1108-1119, 2022  

 

1112 

 

2020 to 7 August 2020). Phase 2 is for the second wave (1 March to 2 July 2020), and Phase 
3 is for the third wave (20 September 2020 to 31 December 2020). Taking the data of the 
second and third waves of COVID-19 allows us to analyze the stability of the outbreak during 
the period given by the KKM by estimating the eigenvalues. 

The values of the parameter estimated for each phase for infection rate ( β ) and 
recovery rate (γ )  are obtained through the curve fitting process of the daily cases in R 
software environment. Meanwhile, the rate of death caused by the disease ( 1µ ), is estimated 
using the formula of the number of total deaths over the number of infected cases. The natural 
birth rate (α ), natural death rate ( 0µ ) and the rate at which recovery people become 
susceptible due to low immunity or health-related issues (δ ) are assumed as zero to simplify 
the SIR model. 

 

3.        Numerical Method/Runge-Kutta Method 

The governing Equations (4) are solved numerically using the RK4 and assisted by Matlab® 
software. 

The RK4 method commonly used is written as below (Burden,2010) 

( )1 1 2 3 42 2
6+ = + + + +n n
hy y k k k k  (5) 

with  
( )1
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4 3
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2 2
1 1,
2 2
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2 2
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 
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k f x h y hk

k f x h y hk

k f x h y hk

 (6) 

Where h  is a step size and each of the k ’s represents a slope. 

 

4.        Stability of The Model 

This section focuses on how to obtain the disease-free equilibrium and the endemic 
equilibrium of system in (4). 

4.1 Basic Reproduction Number  

The basic reproduction number, 0R could be described as the expected number of secondary 
disorders produced by a single infection in a completely susceptible population without 
immunity and preventive measures. When the infected individual infects more than one or 
R >0 1, the viruses can further spread in a population and become an outbreak. On the other 
hand, if R <0 1 or infected individual less than one, then the disease can be diminished. When 
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R =0 1, the outbreak becomes endemic since every infected person will only infect one person 
before recovering. According to Chuo at el. (2008), The basic reproduction number, 0R  for 
the SIR model will be defined as Equation (7). 

0
0 1

β
µ µ γ

=
+ +

SR  (7) 

4.2 Local Stability of The Disease-Free Equilibrium Point 

Diekmann et. al. (1990) stated the disease-free equilibrium point will be asymptotically stable 

if R <0 1 and unstable if R >0 1. Let 0dS dI dR
dt dt dt

= = =  and the disease-free equilibrium point 

is ( ) ( )0 1,0,0J P = . The model has a disease-free equilibrium given by this Jacobian matrix 

( )J P0 : 

( ) ( )
0

0 0 1

0

0
0

β µ β δ
β µ µ γ

γ µ δ

− − 
 = − + − 
 − − 

I S
J P I  (8) 

The eigenvalues are obtained by solving the matrix Equation (8). 

If the eigenvalues, λ have negative real parts, thus the disease-free equilibrium point 
will become asymptotically stable. In other words, each infectious individual infects less than 
one other individual, and the pathogen will demise the population. Otherwise, if the 
eigenvalues λ have positive real parts, then the disease-free equilibrium point will become 
unstable, which means that there will be an exponential rise in the number of cases over time 
and epidemic results (Woolf, 2020). 

4.3 Existence of The Endemic Equilibrium Point 

Diekmann et al. (1990) stated the endemic equilibrium point ( ) ( ), ,J P S I R=1 0 0 0 of the 
epidemic model will exists if R >0 1. Thus, the Jacobian matrix ( )J P1  for the system in (4) 

( ) ( )
I S

J P I S
β µ β δ
β β µ µ γ

γ µ δ

− − − 
 = − + − 
 − − 

0

1 0 1

0

0
0

 (9) 

 

5.       Result and Discussion 

The graphical results of the numerical solution to SIR model in (4) are presented in this 
section. Moreover, the stability of disease-free and endemic equilibriums of the SIR model is 
analyzed by the Jacobian matrix. 

The SIR model for phase 1 is conducted for 160 days, from 1 March 2020 to 7 August 2020 
with 0 1.733683152=R . Phase 1 is initialized by setting 1 Mac 2020 as time, 0t =  with the 
initial conditions ( )0 1S = , ( )0 0.2I = and ( )0 0R = . Phase 2 is conducted for 124 days from 
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1 March 2020 to 2 July 2020 with 0 1.904371247=R  and the same initial conditions in phase 
1. Lastly, phase 3 is conducted for 103 days from 20 September 2020 to 31 December 2020 
with 0 2.543103448=R  and initial conditions ( )0 1S = , ( )0 0.09=I  and ( )0 0.01R = . 

5.1     Validation of The Methods 

A Comparative study for the SIR model with the numerical results of the Euler method is 
performed to prove and validate the numerical results obtained from RK4 method by 
comparing the pattern of susceptible, infected and recovered individuals against time t (days). 
The values of the estimated parameter being considered in this study are listed in Table 1. 

 
Table 1: The parameter values for phase 1, phase 2 and phase 3. 

 

Parameters Phase 1 Phase 2 Phase 3 
Infection rate, β  0.079946685 0.05158641 0.26236209 
Recovery rate, γ    0.046113781 0.027088421 0.10316611 
Disease-induced death, µ1  0.013907432 0.014122316 0.00331573 

 

 
(a)                                                                (b) 

Figure 3. The graphical comparison of SIR graph using (a) RK4 method and (b) Euler method for 
phase 1 with the initial conditions ( )0 1S = , ( )0 0.2I =  and ( )0 0R = . 

Figure 3 shows the graphical comparison of the SIR graph with the RK4 and Euler methods. 
The behavior of SIR in Figure 3(a) is the spitting image of Figure 3(b). The value at 44 days 
portrays 0.46 for both methods. These identical results verify that both methods are in 
agreement with one another. Hence, the numerical results obtained are considered reliable and 
valid. 

5.2      Analysis of The Results 

The dynamic behavior of the SIR model is investigated based on the simulation curves 
obtained from (2). This study focuses on three phases of daily COVID-19 data.  
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Figure 4. The SIR model for phase 1 (160 day) with 0.079946685,β = 0.046113781γ =  

1and 0.013907432µ =  and initial conditions ( ) ( ) ( )0 1, 0 0.2, 0 0S I R= = = . 

Figure 4 shows the initial stage of day zero, 0=t  the infectious count has an upward trend 
until day 20 due to some peak cases between 15 March 2020 (day 15) to 26 March 2020 (day 
26). However, the infected population started to decline steadily by exhibiting a downward 
trend from day 21 (21 March 2020) until day 160 (7 August 2020) since the implementation 
of MCO from 18 March 2020 (day 18) until 12 May 2020 (day 73). Meanwhile, the 
susceptible population decreases rapidly from day zero to day 120 (28th June 2020). On day 
121, the susceptible graph remains asymptotically until day 160. For the recovered 
population, the graph started to significantly increase from day zero to day 160. The outbreak 
for phase 1 occurs in the first 100 days of the phase. After day 101, the outbreak is 
controllable until the end of the phase. 
 

 
Figure 5. The SIR model for phase 2 (124 day) with 0.05158641,β = 0.027088421γ =  

1and 0.014122316µ =  and initial conditions ( ) ( ) ( )0 1, 0 0.2, 0 0S I R= = = . 

Figure 5 portrays the results for phase 2 (second wave) from 1 March 2020 until 2 July 2020. 
The graph of infection on day zero noticeably increases until day 20. From the reported daily 
cases, there are few peak cases between day 20 (20 March 2020) and day 26 (26 March 
2020), exceeding 200 cases per day. Since the implementation of MCO on day 18 (18th 
March 2020) until day 73 (12th May 2020), the infected graph gradually decreases from day 
40 until day 120. Meanwhile, the susceptible population moderately decreases from day zero 
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to day 120 (28th June 2020) after the recovery of MCO (RMCO) on 10 June 2020 (day 102) 
until 28 June 2020 (day 120). While the recovered population steadily increases from day 27 
to day 120. The outbreak for phase 2 occurs due to the increase of infected cases with the 
value of 0R  higher than phase 1. 

. 

 
Figure 6. The SIR model for phase 3 (103 day) with 0.262362091,β =  0.10316611γ =  

1and 0.003315734µ =  and initial conditions ( ) ( ) ( )0 1, 0 0.09, 0 0.01S I R= = = . 

Figure 6 depicts phase 3 (wave 3), which is 20 September 2020 until 31 December 2020. The 
infected cases rose dramatically from day zero (20 September 2020) until day 16 (6 October 
2020), which was caused by the appearance of new clusters in Sabah, Kedah and Selangor in 
the middle of September. These formed clusters exist when most people travel regionally 
within Sabah and the peninsula following the parliamentary Sabah on 26 September 2020. 
Meanwhile, the Sivagangga cluster in Kedah started when the restaurant owner visited a town 
exposed to the outbreak. After day 20, the infected population starts to decrease rapidly until 
day 70 and remains asymptotically from day 71 until day 100. The susceptible population 
decreases rapidly from day zero to day 40 (30 October 2020). After day 41, the susceptible 
population remains asymptotically until day 100. The recovery graph steeply increases until 
the end of phase 3. Over 88000 people were recovered after 28 December 2020. The graph of 
infected gradually shows asymptotic behavior even though the infection rate increases, but the 
recovery rate is much higher. 

5.3     The analyzing of the stability of disease-free equilibrium points of SIR model by 
the Jacobian matrix 

The disease-free equilibrium point will be asymptotically stable if 0 1R <  and unstable if 

0 1R > . In this section, the stability conditions for the disease-free equilibrium are analyzed 
with 0R  for phase 1, phase 2 and phase 3 are 1.733683152, 1.904371247 and 2.543103448, 
respectively. The eigenvalues obtained are used to determine the stability of the system are 
shown in Table 2. 
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Table 2: The eigenvalues for the stability of the disease-free equilibrium 
 

 Eigenvalues 
Phase 1 1 2 30, 0, 0.06λ λ λ= = = −  
Phase 2 1 2 30, 0, 0.0412λ λ λ= = = −  
Phase 3 1 2 30, 0, 0.1065λ λ λ= = = −  

Since eigenvalues are all real and negative, the system is locally asymptotic stable for all 
three phases which approaches asymptotically to COVID-19 free equilibrium points. 

 

6. Conclusion  
The SIR model for the COVID-19 disease in this study is a fundamental model to describe the 
situation of the outbreak. Moreover, the results of the SIR model depict an overall picture of 
the infectious of COVID-19 in Malaysia. The results indicate that the implementation of 
MCO, CMCO and RMCO has significantly affected the number of infected cases and 
recovered cases simultaneously. The first conclusion in this study is the outbreak for phase 1 
occurs in the first 100 days of the phase between day 20 and day 26. Secondly, the increases 
of infected cases in wave 2 makes the outbreak occurs throughout phase 2 with the value of 

0R  higher than phase 1. Moreover, the infected cases in phase 3 gradually shows asymptotic 
behavior even though the infection rate increases but the recovery rate is much higher. Lastly, 
the local stability of the endemic equilibrium of all phases exists since the value of 0R  is more 
than one. The system is locally asymptotic stable for all three phases, since the eigenvalues 
obtained are all real and negative. Further research can be done by adding new parameters 
such as incubation, vaccination and treatment to the current SIR model in order to reflect the 
real COVID-19 epidemic situation. 
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