
Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

Copyright © UiTM Press

eISSN: 2600-8238

This is an open access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/3.0/).

1652

GRAPHICAL USER INTERFACE FOR BOUNDED-ADDITION

FUZZY SPLICING SYSTEMS AND THEIR VARIANTS

 Mathuri Selvarajoo1*, Mohd Pawiro Santono2, Fong Wan Heng3, and Nor Haniza

Sarmin4

1*,2College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, 40450

Shah Alam, Selangor, Malaysia
3,4Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,

UTM, 81310 Johor Bahru, Johor, Malaysia
1*mathuri@tmsk.uitm.edu.my, 2pawirosantono98@gmail.com, 3fwh@utm.my and 4nhs@utm.my .

ABSTRACT

A splicing system is one of the early theoretical proposals of the DNA-based computation

device. The splicing operation starts when two DNA molecules are cut at specific

subsequences with the presence of restriction enzymes: the first part is then connected to the

second part of the other molecule, or vice versa, to produce splicing languages. Fuzzy with

bounded-addition operation has been introduced as a restriction in splicing systems to

increase the generative power of the languages generated. In this research, a graphical user

interface is developed to generate all the splicing languages generated by bounded-addition

fuzzy splicing systems and their variants. An algorithm is developed using JAVA and Visual

Studio Code software in order to replace the time-consuming manual computation of the

languages generated by bounded-addition fuzzy DNA splicing systems and their variants.

Keywords: Graphical User Interface, Fuzzy Bounded-Addition, Splicing Systems, Formal

Language Theory.

Received for review: 16-01-2023; Accepted: 02-10-2023; Published: 10-10-2023

DOI: 10.24191/mjoc.v8i2.20270

1. Introduction

Each living entity has its own deoxyribonucleic acid (DNA). Watson and Crick (Yusof et al.,

2011) proposed the double-helical structure of DNA for the first time in 1953. Nucleotides,

which are monomers, are used to make DNA molecules. The structure of nucleotides is fairly

simple, consisting of only three components: sugar, phosphate, and base (Amos et al., 2002).

The sequence of their bases, Adenine, Guanine, Cytosine, and Thymine, abbreviated as A, G,

C, and T, respectively, distinguished these DNA structures. Hydrogen bonds connect these

bases utilizing base-complementary rules, in which A pairs with T, G pairs with C, and vice

versa. These pairing rules can be expressed as a, g, c, and t (Yusof et al., 2011).

Head (Pǎun, 1996) in 1987 introduced splicing systems as a mathematical model of

the recombinant behaviour of double-stranded DNA (dsDNA) and the enzymes that cut and

paste dsDNA. Restriction enzymes, which can be found naturally in bacteria, can cut DNA

mailto:2pawirosantono98@gmail.com
mailto:4nhs@utm.

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1653

fragments at certain sequences known as restriction sites, whereas ligases can re-join DNA

fragments with complementary ends (Amos et al., 2002). The mathematical model introduced

by Head is made up of a finite alphabet V, a finite set of initial strings over the alphabet A,

and a finite number of rules R that act on the strings through iterative cutting and pasting that

generate new strings (Yusof et al., 2011). This splicing mechanism generates a language

called a splicing language. All splicing languages with finite sets of axioms and rules have

been proven to be regular which has the lowest generative power in Chomsky’s Hierarchy

(Kari & Kopecki, 2017). Several restrictions are imposed on splicing systems in order to

increase the generative power of the languages generated by splicing systems (Hamzah et al.,

2014). Restrictions on the use of rules, such as probability, group, weights and fuzzy have

been introduced (Hamzah et al., 2014; Karimi et al., 2014; Nguyen et al., 2013; Santono et

al. 2021; Turaev et al., 2012). Fuzzy is important in solving decision decision-making

problems (Ahmad et al., 2020). These restrictions have one thing in common: they increase

the language’s generative power up to context-sensitive languages.

Restricted splicing systems can be considered as theoretical models for universally

programmable DNA-based computers, which is significant in terms of DNA computing.

However, obtaining languages with generative power equivalent to the Turing machine is still

unsuccessful. In (Santono et al. 2022), he introduced the concept of bounded-addition fuzzy

splicing systems; for each axiom, the truth values are associated with the string in a closed

interval [0, 1], and the truth value of a string z is obtained by applying a bounded-addition

fuzzy operation to the truth values of strings x and y (Santono et al. 2023). A threshold

language is defined as a subset of the language generated based on some cut-points in [0, 1].

The purpose of this study is to develop a graphical user interface to generate all the

splicing languages generated by bounded-addition fuzzy splicing systems and their variants.

An algorithm is developed using JAVA language and an integrated development environment

for JAVA using Visual Studio Code software to replace the time-consuming manual

computation of the languages generated by bounded-addition fuzzy splicing systems and their

variants.

The following shows the breakdown of the paper’s structure. Section 2 provides

various key definitions and notations from formal language, splicing systems, and bounded-

addition fuzzy splicing systems. Section 3 presents the algorithm for the graphical user

interface. Section 4 provides the result and Section 5 concludes the research with a discussion

on the overall findings.

2. Preliminaries

In this section, some prerequisites were covered by outlining the basic concepts and notations

of the formal language and the splicing system theories that will be used later. More details

can be referred to (Hopcroft et al., 2000; Rozenberg & Salomaa, 1997; Sarmin et al., 2010).

The following general notations are used throughout the paper. The term 

denotes an element’s membership in a set, whereas  denotes the absence of set

membership. The strictness of the inclusion is specified by , while  stands for

inclusion. The symbol  represents an empty set, while |X| represents the cardinality of a

set X.

The families of recursively enumerable, context-sensitive, context-free, linear, regular

and finite languages were denoted by RE, CS, CF, LIN, REG and FIN respectively. For

these language families, the next strict inclusions, named Chomsky hierarchy (see (Rozenberg

& Salomaa, 1997)), holds:

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1654

     FIN REG LIN CF CS RE.

Next, a basic definition of a splicing system and a theorem on the family of languages

generated by a splicing language are recalled.

Definition 1 (Head, 1987): A splicing system (EH) is a 4-tuple (, , ,)V T A R =

where V is an alphabet, T  V is a terminal alphabet, A is a finite subset of V+ and

*# *$ *# *R V V V V is the set of splicing rules where * denotes the nonempty sequences

and # denotes the pasting operation.

Theorem 1 (Păun et al., 1998): The relations in the following Table 1 hold, where at

the intersection of the row marked with F1 with the column marked with F2, there appear

either the family EH(F1, F2) or two families F3, F4 such that F3  EH(F1, F2)  F4.

Table 1. The family of languages generated by splicing systems.

1 2F \F FIN REG LIN CF CS RE

FIN REG RE RE RE RE RE

REG REG RE RE RE RE RE

LIN LIN, CF RE RE RE RE RE

CF CF RE RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

Next, the definition of a bounded-addition fuzzy splicing system is presented (Eqs. (1)

and (2)).

Definition 2 (Santono et al. 2021): A bounded-addition fuzzy splicing system is a 6-

tuple (, , , , ,)V T A R  =  where V, T, R are defined as for a usual extended splicing

system,
*: [0,1]V  is a fuzzy membership function, A

 is a subset of
* [0,1]V  such that

1

() 1
n

i

i

x
=

 (1)

and  is a bounded-addition fuzzy operation on [0, 1] defined by:

.
B BA B A A

    = + −
+

 (2)

A fuzzy bounded-addition operation is defined next (Eq. (3)).

Definition 3 (Santono et al. 2021): For strings with fuzzy

(, ()),x x (, ()),y y *(, ()) [0,1]z z V   and r R the fuzzy bounded-addition operation

is defined as

[(, ()),(, ())] (, ())rx x y y z z z  a

if and only if (,) rx y za and () () ()z x y  =  is defined by:

 where () and .i ix x Ax y x y x yx y        = + −  + (3)

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1655

∈

Thus, the fuzzy of the string z  V* obtained by splicing operation on two strings x, y

 V* is computed by undergoing bounded-addition operation on their fuzzy membership

values. The language generated by the iterative bounded-addition fuzzy splicing system is

defined below (Eq. (4)).

Definition 4 (Santono et al. 2021): The language generated by an iterative

bounded-addition fuzzy splicing system (, , , , ,)V T A R  =  is defined as:

*() { | (, ()) ()}.L x T x x A
f
   =   (4)

3. The Algorithm in The Graphical User Interface

In this section, the design of the algorithm is explained. The set of string (DNA strand), rule

(restriction enzyme) and threshold value (bounded-addition fuzzy restriction) are decided by

the user. In this example of designing the algorithm, the rules used are in the form of

(a#d$c#a) and (a#l$a#l). The first step begins with setting the rules (a#d$c#a) and the

algorithm design as stated:

public class FuzzySplicingGUI {

 int total = 0;

 String input = "";

 JPanel stringsPanel;

 JTextField stringInput;

 JTextField threshold;

 JTextArea textarea;

 JComboBox<Integer> jComboBox;

 JComboBox<String> dropDownRule;

 List<FuzzySpliceString> spliceObjects = new ArrayList<FuzzySpliceString>();

 private final static String newline = "\n";

 private float thresholdValue;

 private int stepInput;

 HashMap<String, String[]> patternRegex = new HashMap<String, String[]>();

 private String rule1;

 private String rule2;

 private void initPatternRegex() {

 patternRegex.put("a#d$c#a", new String[] { "ad{1}", "ca{1}" });

 patternRegex.put("a#l$a#l", new String[] { "a.\\b", "a.\\b" });

 patternRegex.put("a#l$b#l", new String[] { "a.\\b", "b.\\b" });

 patternRegex.put("l#a$l#b", new String[] { "\\b.a", "\\b.b" });

 }

The same algorithm is used to construct the rule (a#d$b#ad). The next step is to

generate the algorithm for the splicing operation which consists of the cutting and pasting

operation. The algorithm is divided into three parts that is the initial splicing operation,

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1656

followed by the iterative splicing operation and lastly the final splicing operation. The

algorithm is defined below:

//applied rule 1

private boolean isRule1Applied(String input) {

 final String regexRule1 = rule1;

 final Pattern pattern = Pattern.compile(regexRule1);

 final Matcher matcher = pattern.matcher(input);

 while (matcher.find()) {

 if (matcher.group(0) != null) {

 return true;

 }

}

 return false;

 }

return false;

}

//applied rule 2

private boolean isRule2Applied(String input) {

 final String regexRule1 = rule2;

 final Pattern pattern = Pattern.compile(regexRule1);

 final Matcher matcher = pattern.matcher(input);

 while (matcher.find()) {

 if (matcher.group(0) != null) {

 return true;

 }

 }

 return false;

 }

Next, the fuzzy membership values of the strings involved in the splicing operation

are calculated and selected according to the threshold value decided by the user. The

algorithm considering the fuzzy membership values is shown next.

private void algoCalculate(String input1, String noInput1, String input2, String noInput2) {

 if (isRule1Applied(input1) && isRule2Applied(input2)) {

 String output1 = splitStringInput1(input1);

 System.out.println("Slice String 1 from " + input1 + " to " + output1);

 String output2 = splitStringInput2(input2);

 System.out.println("Slice String 2 from " + input2 + " to " + output2);

 String result = output1 + output2;

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1657

 System.out.println(input1 + " + " + input2 + " = " + result);

 float resultCalculation = resultCalculator(noInput1, noInput2);

 System.out.println("a+b-ab=" + noInput1 + "+" + noInput2 + "-" + "(" + noInput1 +

"*" + noInput2 + ")="

 + resultCalculation);

 if (thresholdValue < resultCalculation) {

 FuzzySpliceString o = new FuzzySpliceString();

 o.setInput(result);

 o.setValue(resultCalculation);

 spliceObjects.add(o);

 }

 }

 }

 }

 }

 return false;

 }

Next, all the languages generated are stored and only the selected languages

according to threshold values are displayed as output. The output will be generated by the

algorithm as stated:

private JPanel createLegendButton(String input) {

 JButton button = new JButton("Run Submissions");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent event) {

 String key = String.valueOf(dropDownRule.getSelectedItem());

 setRule(key);

 spliceObjects = new ArrayList<FuzzySpliceString>();

 String x = String.valueOf(jComboBox.getSelectedItem());

 stepInput = Integer.parseInt(x);

 thresholdValue = Float.parseFloat(threshold.getText());

 System.out.println(stepInput);

 String output = stringInput.getText();

 textarea.setText("");

 displayOutput(output, 1);

 String[] outputString = output.split(" ");

 if (outputString.length == 4) {

 if (stepInput >= 2) {

 calculation(outputString[0], outputString[1], outputString[2], outputString[3], 2);

 }

 } else {

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1658

 for (String v : outputString) {

 System.out.println(v);

 }

 }

 }

 });

Finally, a graphical user interface is developed. In the interface, the string and

threshold values are decided by the user. The user can also choose the rule and the number of

iterations of the splicing operation. The algorithm for developing the interface is shown next.

 public FuzzySplicingGUI() {

 initPatternRegex();

 JFrame frame = new JFrame();

 frame.setLayout(new GridLayout(0, 1));

 stringInput = setTextField();

 stringsPanel = createLegend("Strings", stringInput);

 frame.add(stringsPanel);

 threshold = setTextField();

 frame.add(createLegend("Threshold", threshold));

 frame.add(createLegendDropDown("Number of Steps"));

 frame.add(legendDropDownRule("Rules Applied"));

 // frame.add(createLegendStaticText("Rules Applied"));

 frame.add(createLegendButton("Execution"));

 JScrollPane scrollPane = createTextArea();

 GridBagConstraints c = new GridBagConstraints();

 c.fill = GridBagConstraints.BOTH;

 c.weightx = 1.0;

 c.weighty = 1.0;

 frame.add(scrollPane, c);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setTitle("Splicing GUI");

 frame.setSize(500, 800);

 frame.setVisible(true);

4. Results

A graphical user interface is constructed for the algorithm developed using JAVA language

and an integrated development environment for JAVA using Visual Studio Code software in

order to replace the time-consuming manual calculation and also it is user-friendly. In the

interface, the string (DNA strand), rule (restriction enzyme) and threshold value (bounded-

addition fuzzy restriction) are decided by the user. The procedure of using the graphical user

interface is straightforward as it is user-friendly. The steps and figures for generating

bounded-addition fuzzy DNA splicing languages using the interface are shown next.

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1659

Step 1: The initial graphical user interface of the bounded-addition fuzzy DNA

splicing system is illustrated in Figure 1.

Figure 1. Initial graphical user interface.

Step 2: Fill in the strings with fuzzy membership value, threshold value and select the

rule. The image is illustrated in Figure 2.

For this example, the strings inserted are dad and cad with fuzzy values of 0.3 and

0.7 respectively. The threshold value is decided to be 0.01 which means that all the strings

generated should have fuzzy membership value greater than 0.01. The rule chosen for this

example is (a#d$c#a) as this rule can be applied to the strings inserted earlier.

Figure 2. The image after inputs are filled/ selected.

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1660

Step 3: Next, the number of iterations of the bounded-addition fuzzy DNA splicing

operation is selected as illustrated in Figure 3. In this example, the number of iterations

chosen is four.

Figure 3. The image of selecting the number of iterations for the bounded-addition fuzzy DNA splicing

operation.

Step 4: The splicing languages are generated by pressing the Run Submissions button

as illustrated in Figure 4. The output will be generated in the interface for the user’s view. In

this example, the output in Step 1 is the original strings with their fuzzy membership values.

The following steps list down all the languages generated with fuzzy membership values

greater than 0.01 which satisfy the threshold value (fuzzy restriction) as required by the user.

Figure 4. The image of the generated splicing languages.

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1661

This graphical user interface also enables the user to view all the languages generated

by the respective bounded-addition fuzzy DNA splicing system. To do so, the user can choose

to view all the splicing languages generated by setting the threshold value to 0.

5. Conclusion

In conclusion, a graphical user interface for bounded-addition fuzzy DNA splicing systems

and their variants is generated using the JAVA programming language and the Visual Studio

Code software's integrated development environment for JAVA. This graphical user interface

is user-friendly as the user can select the string, rule, and threshold value that correspond to

the DNA strand and restriction enzyme. This interface also allows the user to select the

number of iterations for the bounded-addition fuzzy DNA splicing systems, as well as to view

all the languages produced by the bounded-addition fuzzy DNA splicing systems and their

variants. In the future, designing a graphical user interface with a different operation such as

multiplication can be explored.

Acknowledgement

The first and second authors would like to thank the Ministry of Higher Education and

Universiti Teknologi MARA Malaysia for the financial funding through the research grant

FRGS-RACER (600-IRMI/FRGS-RACER 5/3 (050/2019)). The third and fourth authors

would also like to thank the Ministry of Higher Education and Research Management Center

(RMC) UTM for the UTMShine Grant Vote No. Q.J130000.2454.09G89.

Funding

The authors received funding from Universiti Teknologi MARA and Universiti Teknologi

Malaysia through the FRGS-RACER grant and UTMShine Grant respectively.

Author Contribution

Author 1 prepared the introduction and literature review. Author 2 wrote the research

methodology and designed the algorithm of the interface and interpreted the results. Author 3

and author 4 conclude the result and oversaw the article writing.

Conflict of Interest

The authors have no conflicts of interest to declare.

References

Ahmad, S. A. S., Mohamad, D., Azman, N. I. (2020). Similarity based fuzzy inferior ratio for

solving multicriteria decision making problems. Malaysian Journal of Computing, 5

(2), 597-608.

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1662

Amos, M., Pun, G., Rozenberg, G., & Salomaa, A. (2002). Topics in the Theory of DNA

Computing. Theoretical Computer Science, 287(1), 3–38.

https://doi.org/10.1016/S0304-3975(02)00134-2

Hamzah, N. Z. A., Mohd Sebry, N. A., Fong, W. H., Sarmin, N. H., & Turaev, S. (2014).

Splicing Systems over Permutation Groups of Length Two. Malaysian Journal of

Fundamental and Applied Sciences, 8(2), 83–88.

https://doi.org/10.11113/mjfas.v8n2.127

Head, T. (1987). Formal language theory and DNA: An analysis of the generative capacity of

specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6), 737–759.

https://doi.org/10.1007/BF02481771

Hopcroft, J. E., Motwani, R., Rotwani, & Ullman, J. D. (2000). Introduction to Automata

Theory, Languages and Computability.

Kari, L., & Kopecki, S. (2017). Deciding whether a regular language is generated by a

splicing system. Journal of Computer and System Sciences, 84, 263–287.

https://doi.org/10.1016/j.jcss.2016.10.001

Karimi, F., Turaev, S., Sarmin, N. H., & Fong, W. H. (2014). Fuzzy splicing systems. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 8733, 20–29. https://doi.org/10.1007/978-3-319-

11289-3_3

Nguyen, N. T., Trawiński, B., Katarzyniak, R., & Jo, G. S. (2013). Probabilistic Splicing

Systems. Studies in Computational Intelligence, 457(January).

https://doi.org/10.1007/978-3-642-34300-1

Pǎun, G. (1996). On the Splicing Operation. Discrete Applied Mathematics, 70(1), 57–79.

https://doi.org/10.1016/0166-218X(96)00101-1

Păun, G., Rozenberg, G., & Salomaa, A. (1998). DNA computing: New computing

paradigms. Computers & Mathematics with Applications, 37(3), 134.

https://doi.org/10.1016/s0898-1221(99)90411-x

Rozenberg, G., & Salomaa, A. (1997). Handbook of Formal Languages. In Handbook of

Formal Languages (Issue January). https://doi.org/10.1007/978-3-642-59126-6

Santono, Mohd Pawiro; Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, N. H. (2021). Some

Properties of Bounded-Addition Fuzzy Splicing Systems. Kalahari Journals, 6(3),

2698–2705.

Santono, Mohd Pawiro; Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, N. H. (2022).

Bounded-Addition Fuzzy Simple Splicing Systems. Journal of Algebraic Statistics,

13(2), 2079–2089.

Santono, Mohd Pawiro; Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, N. H. (2023). The

Properties of Bounded-Addition Fuzzy Semi-Simple Splicing Systems. ICMSS 2022,

6(3), 354–363.

Selvarajoo et. al., Malaysian Journal of Computing, 8 (2): 1652-1663, 2023

1663

Sarmin, N. H., Yusof, Y., & Wan Heng, F. (2010). Some characterizations in splicing

systems. AIP Conference Proceedings, 1309(December), 411–418.

https://doi.org/10.1063/1.3525142

Turaev, S., Gan, Y. S., Othman, M., Sarmin, N. H., & Fong, W. H. (2012). Weighted splicing

systems. Communications in Computer and Information Science, 316 CCIS, 416–424.

https://doi.org/10.1007/978-3-642-34289-9_46

Yusof, Y., Sarmin, N. H., Goode, T. E., Mahmud, M., & Heng, F. W. (2011). An Extension

of DNA Splicing System. Proceedings - 2011 6th International Conference on Bio-

Inspired Computing: Theories and Applications, BIC-TA 2011, 246–248.

https://doi.org/10.1109/BIC-TA.2011.67

