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ABSTRACT 

This paper introduces the vulgarized network autoregressive process with Gaussian and 

Student-t random noises. The processes relate the time-varying series of a given variable to the 

immediate past of the same phenomenon with the inclusion of its neighboring variables and 

networking structure. The generalized network autoregressive process would be fully spelt-out 

to contain the aforementioned random noises with their embedded parameters (the 

autoregressive coefficients, networking nodes, and neighboring nodes) and subjected to 

monthly prices of ten (10) edible cereals. Global-α of Generalized Network Autoregressive 

(GNAR) of order lag two, the neighbor at the time lags two and the neighbourhood nodal of 

zero, that is GNAR (2, [2,0]) was the ideal generalization for both Gaussian and student-t 

random noises for the prices of cereals, a model with two autoregressive parameters and 

network regression parameters on the first two neighbor sets at time lag one. GNAR model with 

student-t random noise produced the smallest BIC of -39.2298 compared to a BIC of -18.1683 

by GNAR by Gaussian. The residual error via Gaussian was 0.9900 compared to the one of 

0.9000 by student-t.  Additionally, GNAR MSE for error of forecasting via student-t was 

15.105% less than that of the Gaussian. Similarly, student-t-GNAR MSE for VAR was 1.59% 

less than that of the Gaussian-GNAR MSE for VAR. Comparing the fitted histogram plots of 

both the student-t and Gaussian processes, the two histograms produced a symmetric residual 

estimate for the fitted GNAR model via student-t and Gaussian processes respectively, but the 

residuals via the student-t were more evenly symmetric than those of the Gaussian. In a 

contribution to the network autoregressive process, the GNAR process with Student-t random 

noise generalization should always be favoured over Gaussian random noise because of its 

ability to absolve contaminations, spread, and ability to contain time-varying network 

measurements.  
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1. Introduction  

Complex dynamic systems have become an intricate part of our world. Many fields like 

neuroscience, engineering, biology, and finance are driven by these complex systems. One 

major approach applied to understand the complex behaviors exhibited by these systems are 

the graph-based models (Halim & Shuhidan 2022). These models have the ability to capture 

the spatial characteristic of both the static and dynamic processes exhibited by the system as 

well as the time dependence (Podlubny, 1999; Bai et al., 2019). 

More recently, there has been an increasing interest in the use of networks to model 

time series data. The underlying drive is the need to map time series data onto a multiplex 

model such as a network and then explore the different distinctive features of the data through 

the analysis of the complex network. Additionally, the basic assumption guiding a network 

specifically requires an adequate level of ‘association’ between the different attributes of the 

two closely connected vertices (Dahlhaus & Eichler, 2003; Kolaczyk, 2009). 

One of the cognate traits and relevancy in complex systems and networking is the 

feature of graph representation. It is in line with the relevancy that Fortunato (2010) referred to 

graph networking or representation as community detection. It is otherwise called community 

structuring or clustering. It is the organization of acmes (vertices) in clusters, such that 

neighbours of vertices’ edges join vertices of the same community structuring, and 

comparatively few edges join vertices of different clusters. In other words, community 

detection can be be thought of as autonomous compartments of a graph, or clustering playing a 

similar role. Community structuring or clustering is of prominence in work areas where 

systems, and clustering are represented as graphs. Its importance is for identifying modules and 

their well-defined inter-face that allows the classification of vertices in accordance with their 

structural position (Gregory, 2009; Dhumal & Kamde, 2015; Krampe, 2019). To model the 

varying attributes of a dynamic network, Khan & Niazi (2017) considered a scenario where the 

network model dictates the dependency structure of the time series (the attributes). The 

framework gave room for both the network model and time series to be modeled separately and 

then combined within a multivariate doubly stochastic time series setup. Chen (2022) and 

Bloemheuvel et al. (2022) also considered a similar study with the added perspective of 

incorporating exogeneous regressors to allow the target series to be regressed by its own 

historical time lags. With a specific focus on sensor networks, Gao et al. (2017) exploited 

spatial and time series information through graph-based neural networks. They developed the 

TISER-GCN regression neural network for processing long multivariate time series. 

Thus, graph-based models can bring to light latent dependencies that exist between the 

variables in a given dataset. In view of this, quite a number of methods have been developed 

which specifically deal with the reconstruction of a complex network from either a univariate 

or a multivariate time series. Some earlier literature has included the multiplex recurrence 

networks proposed by Zhang & Small (2006) designed to test the oil-water flow to capture the 

information on spatial flow. Baudry & Robert (2019) developed the pseudo-periodic time series 

transform algorithm. They focused on investigating the statistical properties of the different 

chaotic time series networks. Their result indicated distinct topological structures stemming 

from the hierarchy of unsteady periodic orbits that were already enclosed in the chaotic 

attractor. Some authors have worked on the generation of time series from deep learning 

networks. The autoregressive implicit quantile network was designed by Guibert et al. (2020) 

to analyze time series data in a bid to learn in an efficient way the basic time dependencies of 

the driving stochastic process. In a similar vein, Krampe (2019) developed the random vector 

functional enlace neural networks and the vector autoregressive elastic-net model-to-model 

mortality and construct life tables. Nikolaev et al. (2013) to model the time-dependent variance, 

which usually features in time series data, presented a mixing neural network. 
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Focusing on the application in various fields, Gao et al. (2014) presented a 

computational algorithm applied to quantitatively define autoregressive patterns in a time series 

based on regression models. Gregory (2009) worked-out the largest connected component of 

networks of scientist collaborators working at the Santa Fe Institute (SFI). It was affirmed that 

there were 118 vertices that make-up residing scientists at SFI and their collaborators. Fortunato 

(2010) confirmed that the edges are the placement between scientists that have published at 

least one paper together, while it was observed that the network clique connote authors of the 

same paper are all linked to each other with few connections between most groups. Gao et al. 

(2019) constructed a spatial-temporal convolutional neural network for an 

electroencephalograph (EEG).  

In relation to connecting networks, Ibrahim & Awang (2022) developed a sensor 

network  for spatially dispersed and dedicated monitors in order to access the physical 

conditions of an organized data measurements extracted at a particular location. They adopted 

the Compressive Sensing (CS) algorithm in order to enhance long lifetime network, reduced 

energy consumption, and a simple routing scheme. However, their implemented CS algorithm 

helped to increase networking life by 9.7%, but failed to incorporate time-varying schemes. 

Furthermore, Zhen et al. (2019) and Olanrewaju et al. (2022) focused on a new 

methodology of converting a multidimensional time series into a complex network established 

upon a correlation coefficient matrix. U.S. crude oil price data from twenty-three (23) regions 

was used for their analysis. In examining the heteroscedasticity displayed by short-term series, 

An et al. (2020) showed that the diversity of the fluctuations affect the length of the short period. 

These short-term fluctuation series were based on the autoregressive generalized autoregressive 

conditional heteroscedasticity model having a weighted edge. Given the high rate of death and 

spread of COVID-19, some studies have applied the generalized network autoregressive 

(GNAR) time series model to model the cases of deaths/survivors Urrutia et al., (2022) and to 

investigate the economic response of COVID-19 for different countries via purchasing 

managers’ indices. In both cases the GNAR performed significantly well. 

Our study leans towards the research undertaken by Knight et al. (2020) who analyzed 

multivariate time series based on an already existing underlying network where each node was 

assumed to depend not only on its previous values, but also on the previous values of its 

neighbours as well as further down it the historical tree. In particular, they adopted the Gaussian 

Independent, and Identically Distributed (iid) assumption for the random noise. This poses 

some constraints and excludes observations that are heavy-tailed in nature such as financial 

data. We relax this assumption by adopting the student-t-distributed white noise to relax the 

inclusion of heavy-tailed observations and to allow flexibility in modeling random errors. This 

clear distinction between the random errors when modeling on complex networks has received 

little attention in previous studies and a comparative analysis has rarely been undertaken. 

Culurciello (2017), Olanrewaju & Oseni (2021) and Ibrahim & Awang (2022) noted after an 

extensive literature review the lack of a neural network that could capture the features exhibited 

by financial returns, that is, extreme fat tails, and leptokurtic characteristics raised this concern. 

The author then went ahead to study nonlinear neural networks for forecasting conditional mean 

and variance where both the Gaussian and student-t neural networks were investigated. The 

conclusions made with respect to the superiority of the latter to the former when dealing with 

extreme leptokurtic data align with that of Briegel & Tresp (2000) who also incorporated this 

distinction when constructing their dynamic neural regression model by replacing Gaussian 

errors with a more flexible noise model that is based on the student-t-distribution. They showed 

experimentally that the student-t-distributed noise model gives rise to online learning 

algorithms that are more stable than their Gaussian error counterparts. 

Knight et al. (2020) proposed the Generalized Network Autoregressive (GNAR) 

processes with Gaussian random noise, in this paper, we shall be presenting vulgarized 

neighbouring network of the multivariate autoregressive process with student distributed 
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random noise as an extension to the GNAR process. We shall be applying both the GNAR and 

the vulgarized neighboring network of the multivariate autoregressive process with student-t-

distributed to the monthly-accord wholesale of prices (in naira (#)) of cereals in Kano state, 

Nigeria. The coefficients and performances of the two processes would be estimated and 

juxtaposed. In a clearer term, the core and novel objectives of this write-up are that, a vulgarized 
neighboring network of multivariate autoregressive process with student-t-distributed random 

noise will be expounded as an extension and alternative to the Generalized Networking 

Autoregressive (GNAR) process, such that  the former’s parameter estimation was carried-out 

via Expectation-Maximization (EM) algorithm. In addition, the GNAR and vulgarized 

neighboring network of the multivariate autoregressive process with student-t-distributed 

random noise will be applied to contaminated time-varying series of prices of cereals in Kano 

state, Nigeria in order to juxtapose their noise effectiveness. 

 

2. Method 

Assuming two or more univariate autoregressive processes 
i
 at each node/vertex/graph of a 

network/ data structure depending on both immediate past values of the node and previous time 

neighbouring nodes give a multivariate time series. In other words, neighbouring nodes will be 

part of the autoregressive networking structure of the observed time series as proposed by 

(Knight et al., 2020).Working from the (Knight  et al., 2020)‘s perspective: Let (N 1)  be the 

vector nodal time series, 
( )1, ,, ,

T

t t N TY Y Y= L
, that is, networking size with N-nodes indexed as 

 1,i N
. Describing the network structure within and between the nodes via network structure 

of time-varying associate weights (otherwise known as linking weight), say “ ”. The time, 1 

≤ t ≤ T  for the generalized autoregressive process of the order 
( ) 0,[m] kk  ¥ ¥

 of 
tY
 is 

                   

( )
0
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, , , , , , , , ,

1 1 ( )
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 
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 
 

   
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                           (1)     

Where,           

    

“k” belongs to the set of natural number as the optimal time lag, 
1 2[ ] ( , , , )km m m m= L  such  

that, 
0jm ¥ , the maximum phrase of dependence of neighbor at time lag  j;  0 0= ¥ ¥ . 

( ) ( )n

tN i  is the nth-stage of neighbourhood nodal set “i” at time “t”.  

( )

, ,

t

i p c  is the linking probability (connecting weight) between nodes “i” and “p” at time “t”  

with their associated route covariate “c”, such that ( )

, ,0 1t

i p c  . 

ij   is the “j” lag of autoregressive processes at node “i”. 

i   is the autoregressive processes at node “i”. 

  is the networking weight or connecting weight. 
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N  is the networking size of a nodal time. 

¥  is the set of Natural number 

0¥  is the set of Natural number minus zero, that is,  0−¥  

, ,j n c  ¡   is the effect of nth-stage neighbours at lag “j” together with covariate 1, ,c C= K   

,i t   is the random noise. 

Knight et al. (2020) adopted the Gaussian Independent and Identically Distributed (iid)  

Assumption for the random noise, but in this research, the student-t-distributed white noise 

would be adopted in the course of this work to relax the inclusion of heavy-tailed observations 

and to allow flexibility in modelling random errors. The objective of the study is to estimate 

embedded parameters, fit a real-life dataset (financial dataset), and predict from the vulgarized 

neighbouring network of multivariate autoregressive processes with adopted student-t-

distributed white-noise and compare with generalized network autoregressive processes with 

independently and identical distributed Gaussian random noise. 

2.1. Parameter estimation via expectation-maximization (EM) algorithm 

In this section, we shall discuss the parameter estimation of the GNAR model with student-t 

random noise. It is to be noted that the group label is  is the latent (connecting weight). 

The parameter estimation and group detection would be constrained to be time variant. We are 

interested in modeling the dynamics of   such that all the effects are invariant with nodes of 

homogenous type. To do that we assume the nodes in the network are classified into k-groups, 

where each group is characterized by a specific set of parameters. We start by making some 

denotations: 

Let,  

                                   

( )
0

( )

, , , , ,

1 ( )

j

t
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mC
t

it j n c i p c p t j
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                                        ( )( ) :k
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Then Equation (1) could be written as 

                                            ( ) ( ) ( )k k k

t t k tY G =  +                                                                       (7) 
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Subsequently, the Ordinary Least Squares (OLS) estimator can be obtained for the thk -group 

as: 

                                        
µ

1

( ) ( ) ( ) ( )

1 1 1

1 1

T T
k T k k T k

k t t t t

j j
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   
 

                                               (8) 

Recall, that the latent variable ( )

, ,

t

i p c  which indicates the linking probability (connecting weight) 

between nodes “i’ and “p” at time “t” with their associated route covariate. Let " "  denote the 

overall parameter space. 

So,  
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Such that (.)  is the Student-t Probability Density Function (PDF): 
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Where “ v ” is the degree of freedom. 

Adopting the EM-algorithm for the parameter estimation, we just need to set an initial value 

for  µ(0)


, then iteration of the two steps (EM-algorithm) in the thf ( )1f   iteration.    

First Step (E-Step): Estimating  
, ,i p c  by its posterior average ( )

, ,

f

i p c  . Here 
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(Since Student-t distribution is a ratio of independent Normal-variate and Chi-Square 

distribution with degree of freedom ( v )). 

 

Second Step (M-Step): Given ( )

, ,

f

i p c Equation (11) is then maximize regarding to , ,k k k    

to have  
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The steps are to be repeated until the EM-algorithm converges for desired results of the 

estimators. It is to be noted that  µ( )f

k
of  Equation (12) is in a similar spirit to Equation (7). In 

particular, the EM estimation of 
k  can also be perceived as a weighted OLS estimator, such 

that, the weights are the latent group variables 
, ,i p c .  Additionally, the estimation of 2

k  and 

k  in Equation (13) and Equation (14) can be fully grasped in a similar way. 

 

3. Numerical results  

The monthly-concord wholesale prices (in naira (#)) of cereals in Kano state, Nigeria. The 

prices of the cereals were from 2007 to 2019 and were recorded in naira (#). The uniformly 

time variant prices’ dataset was obtained from the Ministry of Agriculture and Natural 

Resources (MANR), Kano state, Nigeria. The prices of cereals in particular are sorghum, 

groundnut, beans, rice, maize, millet, gcorn, cowpea, wheat, and cassava. The average monthly 

prices of the cereals were regulated prices of the edible grains by MANR. The time series 

dataset was obtained from the Ministry of Agriculture and Natural Resources (MANR), Kano 

state, Nigeria. The dataset was a monthly uniform time-varying harmonized and regulated price 

of the edible grains by the ministry.    
 

Figure 1.  Networking Graph of the Prices of Cereals. 
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Networking analysis refers to the structuring of variables represented by nodes in 

relation to edges between nodes. Nodes are sometimes referred to as vertices, and edges 

otherwise known as links, while networks are called graphs for analysing group-level or 

individual-level networks based on times series data, longitudinal time series data or cross-

sectional data. Based on Figure 1 above, the centrality of the nodes/edges in the network of 

prices of cereals understudy are Gcr, srg, ric and maz which stand for Gcorn, Sorghum, Rice, 

and Maize respectively. The betweenness centrality for each centralized nodes mentioned is the 

shortest paths that cater across the mentioned nodes is the deep green color that connected the 

price of rice and maize; price of Gcorn and Sorghum. This literally mean closeness in the prices 

of rice and maize; and Gcorn and Sorghum, compared to others.  The other light green colors 

measure the strength of the eigenvector centrality node, nodes with deeper green color are those 

that are linked to many other nodes which are in turn, connected to many others. Contrarily, the 

red colors measure how the centralized nodes were unconnected to many other nodes, which 

are in turn, connected to many others. 

 

Figure 2.  Greyscale Differencing Time Series of the Prices of Cereals. 

Clustering is a tool used in operating network analysis of the group of nodes that are 

based on graph topology. It is otherwise known as community detection. It entails a multivariate 

time series in line with the real-inferred network that gives insights into inter-variable 

relationships. Based on Figure 2 above, from the vertical axis (y-axis), the deeper inferred from 

0.5000 to 0.7000 versus 0.7000 to 1.0000 the same deeper inferred of the x-axis suggested an 

overlapping graph, such that node of the prices of cereals can be partitioned into three sets, the 

connected, correlated and unordered paired. Concisely, it means 70% (0.7000) of the cereals 

prices explained and inter-explained one another. It is sometimes called the GNAR 

autocorrelation.   
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3.1 Discussion 

In time series, we normally select the optimal or best lag (order) of an AR process via its minimum corresponding Partial Autocorrelation Function (PACF) or 

AutocorrelationFunction (ACF) value. Consequently, the selected lag values for the corresponding BICs instead of the PACF for the study. Instead of using the 

word “BIC”, the “sort” was used because its criteria are for selecting the optimal order. The lag of order two (2) for autoregressive has the minimum sort in 

Table 1. 

Table 1. Selecting the Best GNAR Order using the BIC for the Networking of Autoregressive 

Process via Student-t-distribution 

 Order 2 7 3 8 4 6 1 2 9 

   Sort -18.2850 -18.1910 -18.2610 -18.2140 -18.1970 -18.1680 -16.4400 -18.2850 -16.4320 

 

The histogram in Table 3 defines the network regression parameters on the first two neighbor sets at time lag two, that is nodal of in- and out-degree of  

node two (2). The model that minimized BIC, in this case, was the second model, GNAR(2, [2, 0]), a model with two autoregressive parameters and network 

regression parameters on the first two neighbor sets at a time lag of two. In fact, in order two (2), the sorted BIC was -18.285 for the minimum BIC among 

others. Among the nine (9) reoccurence PACFs of the same nine (9) lags of the AR process, AR of order two with two nodes gave a mínimum model selection 

criteria via BIC. The corresponding coefficients of the selected model are in Table 2 and Equation (9).  It means we have autoregressive coefficients at optimal 

at lag two (2) for two nodes. Additionally, there are two effects of the thn -stage neighbors at lag two (2) such that the random noise 
,i t  takes the form of 

student-t-distribution.      

Table 2. Coefficients of the GNAR (2, [2, 0]) for the Networking of Autoregressive Process via Student-t-distribution. 

Coefficients Est. Std. 

Error 

t-value Pr(>|t|) Residual 

Error 

Adjusted R-

squared 

GNAR 

BIC 

GNAR 

MSE 

node-specific 

AR models 

GNAR MSE 

with VAR 

model 

 

dmatalpha1 0.6187  0.0244   25.359   0.0020 0.4373 0.9008 -39.230 0.0073 0.0014  0.0001 

dmatphil.1 0.0432 0.0136  3.1880   0.0015       

dmatphil1.2 -0.0099 0.0169   -0.5320   0.5946           

dmatalpha2 0.3117     0.0239   13.0450  0.0020       
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Keys: Std.Error = Standard Error; Est.=Estimate 

  

Mathematically, 

 

                                                                                                    (15)   

 

 

 

Figure 3.  Plot and Histogram of the Residuals for the Student-t-GNAR Random Noise. 

 



 

Olanrewaju et al., Malaysian Journal of Computing, 8 (2): 1574-1588, 2023  

 

1584 

 

Table 3. Selecting the best GNAR order using the BIC for the Networking of Autoregressive Process via Gaussian Distribution. 

Order 3 4 2 1 6 5 7 8 9 

Sort -39.2640 -39.2630 -39.2800 -39.2300 -39.2230 -39.2230 -39.1900 -39.1560 -39.1560 

The model that minimized BIC, in this case, was the second model, GNAR(2, [2, 0]), a model with two autoregressive parameters and network regression 

parameters on the first two neighbor sets at a time lag of one. In fact, at order two (2), the sorted BIC was -39.2800 for the minimum BIC among others.  

Table 4. Coefficients of the GNAR (2, [2, 0]) for the Networking of Autoregressive Process via Gaussian Distribution. 

Coefficients Est. Std. 

Error 

t-value Pr(>|t|) Residual 

Error 

Adjusted R-

squared 

GNAR BIC GNAR 

MSE 

node-

specific AR 

models 

 

GNAR MSE 

with VAR 

model 

 

dmatalpha1 0.9749  0.0269   36.2250     0.0020 0.1869 0.9971 -18.1683 0.1584 0.8437 0.0146 

dmatphil.1 0.0028 0.0029  0.9870    0.3240           

dmatphil1.2 0.0010 0.0037   0.2730      0.7850               

dmatalpha2 0.0278    0.0270   1.0310      0.3030           

Mathematically, 

  

                                                                                                          (16) 
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From the generalized networking autoregressive process coefficients via student-t- 

distribution, the model performance indexes of Residual Error=0.4373, Adjusted R-

squared=0.9008, GNAR BIC=-39.2298, GNAR MSE=0.0073, GNAR Mean Squared Error 

(MSE) with VAR model=0.0001. It implies a residual error of 43% (0.4300) was recorded and 

that 90% (0.9000) of the time-variant data points of the prices of cereals used contributed to the 

model as shown in Table 4. The GNAR error of forecasting recorded was tantamount to 

0.7340% (0.0073) in comparison to 0.01% (0.0001) GNAR MSE with Vector Autoregressive 

(VAR) model. GNAR model with student-t random noise produced the smallest BIC of -

39.2298 compared to a BIC of -18.1683 by GNAR by Gaussian. The residual error via Gaussian 

was 99%  (0.9900) compared to the one of 90% (0.9000) by student-t.  Additionally, GNAR 

MSE for error of forecasting via student-t was 15.105% (0.1511) less than that of the Gaussian. 

Similarly, student-t-GNAR MSE for VAR was 1.59% (0.0159) (lesser than that of the 

Gaussian-GNAR MSE for VAR. Comparing the histogram of Figure 3 to Figure 4, the two 

histograms produced a symmetric residual estimate for the fitted GNAR model via student-t 

and Gaussian processes respectively, but the residuals via the student-t were more evenly 

symmetric than of the Gaussian.  

 

 

Figure 4.  Plot and Histogram of the Residuals for the Gaussian-GNAR Random Noise. 

 

4. Conclusions 

Generalized Network Autoregressive (GNAR) process with Gaussian and Student-t random 

noises were proposed. The processes relate the time-varying series of a given variable to the 

immediate past of the same phenomenon with the inclusion of its neighboring variables and 

networking structure. In conclusion, Generalized Networking Autoregressive (GNAR) process 

with student-t random noise gave a minimum GNAR BIC=-39.2298, GNAR MSE=0.0073, 
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GNAR Mean Squared Error (MSE) with VAR compared to the GNAR process with Gaussian 

random noise. Furthermore, the residuals from the fitted GNAR process with student-t random 

noise were more evenly symmetric on the histogram real number line. The GNAR process can 

be extended to Generalized-Error-Distribution (GED), Extreme-Value-Distributions (EVDs) or 

missing value distributions. 
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