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ABSTRACT 

This study addresses a research gap by introducing fractional order derivatives into the SIR model 
for tracking COVID-19 in Malaysia. The Caputo sense fractional derivative and the Adams 
Bashforth Moulton method are employed to analyse the COVID-19 behavior and stability. By 
manipulating fractional order derivative values, this study investigates their impact on key SIR 
parameters, observing that lower values accelerate the attainment of asymptotic behavior in 
populations. The stability analysis reveals two equilibrium points: an unstable disease-free 
equilibrium and a stable endemic equilibrium within the system. This pioneering exploration of 
fractional order derivatives in the context of Malaysia's COVID-19 modeling contributes valuable 
insights, enhancing our understanding the behavior of the disease. 
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1. Introduction  

The Coronavirus disease of 2019 (COVID-19) is a newly found coronavirus that causes an 
infectious disease (World Health Organization, 2020). COVID-19 was discovered around the end 
of 2019 in Wuhan, China. According to Albrecht et al. (1996), coronaviruses were initially 
classified as part of the coronaviridae family because of their crown-like or halo-like appearance. 
The coronavirus genome comprises a sizeable single-stranded RNA (ribonucleic acid) virus with a 
lipid envelope studded with club-shaped spike proteins (Britannica, 2021). COVID-19 is the 
causative agent of SARS (severe acute respiratory syndrome), which scientists discovered to be the 
source of this infectious disease with cough, fever, exhaustion, and difficulty breathing. When the 
infected individual coughs or sneezes, the COVID-19 virus is transmitted primarily through 
droplets of saliva or discharge from the nose. 

In late 2019, an outbreak of COVID-19 has spread from one of Wuhan's seafood markets, 
where some workers have been admitted to a local hospital with pneumonia of unknown cause. 
The number of patients infected rapidly increases over the next few weeks and spreads beyond the 
Wuhan region. This uncontrollable situation switched to an epidemic where the number of affected 
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potentially doubled along with the announcement of WHO based on rising case notification rates. 
The virus continues to spread widely, and the cases are detected in countless countries worldwide, 
eventually becoming a pandemic. By 2020, COVID-19 has reached the United States, Europe, and 
Asia, brought by travellers from affected areas. 

Malaysia experienced its initial encounter with COVID-19 on January 25, 2020, when 
three Chinese tourists were diagnosed with the virus. Despite limited outbreak control measures, 
the situation escalated rapidly, with confirmed cases jumping from 3 to 22 in just 23 days. A brief 
respite occurred as no new cases were reported until February 27, 2020. However, this reprieve 
was short-lived as Malaysia faced a second wave, leading to a surge in daily positive cases, 
eventually leading the country into a COVID-19 endemic state with a startling three-digit daily 
case count. As of August 26, 2021, Malaysia had recorded its highest number of cases at 24,599, 
accompanied by 393 deaths, solidifying its position as one of the hardest-hit countries in Southeast 
Asia (Idris, 2022). This marked the onset of the COVID-19 pandemic in Malaysia, marked by a 
significant rise in confirmed cases and the emergence of various clusters. 

A study written by Mwalili et al. (2020) focuses on investigating the COVID-19 
transmission dynamics, including pathogen in the surroundings and treatment by applying a 
modified SEIR model. Runge-Kutta methods of fourth and fifth order are used in this study to 
solve the model equations. The author observed that the oR  in this study is 2.03, indicating that the 
pandemic will continue in the population without effective control measures such as limiting non-
essential travel, social distancing, frequent hand washing, and wearing masks in public. 

Mathematical modelling in epidemiology opens a new era in understanding disease 
transmission and provides recommendations for disease control. A few mathematical models can 
describe the dynamic of the COVID-19. The Susceptible-Infected-Recovered (SIR) model is a 
mathematical model used to study the COVID-19 pandemic. In 1927, Kermack and McKendrick 
developed the model which studied a fixed population with only three compartments, which are 
susceptible (S), infected (I) and recovered (R). This model started with the number of people in the 
susceptible, infected, and recovered categories at initial time zero. This SIR model serves as a 
fundamental mathematical model for transmitting epidemic diseases. 

In the article written by Wong et al. (2021), a modified SIR model was used to research a 
simulation of COVID-19 spread in multiples Malaysian cities under vaccination intervention. 
Runge-Kutta differential solvers are used in this study to obtain the simulation curve. The author 
found the curve of active infection varies slightly at different vaccine efficacy levels from this 
study. The result also shows that lowering the reproduction number is required to maintain the 
infection curve flat. Hence, a two-pronged strategy, which is compliance with the standard 
operating procedure (SOP) and vaccination, was suggested in this study to combat the pandemic in 
Malaysia. 

Numerous studies have investigated COVID-19 using various techniques and strategies to 
comprehend its characteristics and how it spreads. Many researchers have employed methods like 
Runge-Kutta fourth and fifth order as well as Euler's methods to solve the SIR model, a common 
tool in epidemiology. Additionally, some researchers have incorporated fractional derivatives, 
specifically the Caputo derivative, into the model equations. The Caputo derivative is a fractional 
derivative introduced by Italian mathematician Caputo in 1967. Fractional derivatives represent 
real or complex derivatives of arbitrary orders in applied mathematics and mathematical analysis, 
providing a versatile tool for modeling complex phenomena like infectious disease dynamics. 
Caputo fractional derivative is the most accessible fractional operator to deal with real-world 
problems because it allows initial and boundary conditions (Atangana, 2018). Applying Adams 
Bashforth Moulton method to the fractional derivative allows computing the approximate solution. 
The Adams Bashforth Moulton is obtained from the Adams-Bashforth and Adams Moulton 
methods. John Couch Adams developed the Adams-Bashforth and Adams-Moulton methods to 
solve differential equation problems. The Adams-Bashforth method is used as the predictor. In 
contrast, the Adams-Moulton method is used as the corrector in a multistep process for 
approximating the solution of a differential equation. 
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Nabi et al. (2020) used Adam Bashforth Moulton method to solve the fractional SIR 
model in their research on predicting the evolution of COVID-19 disease in Cameroon. The 
authors applied Caputo derivative to formulate the fractional model. The result from this study 
show that the solutions of the fractional model converge to the solutions of the integer model for, 
and decreasing the fractional-order parameter delays the onset of epidemic peaks, according to 
numerical simulations. Another study by Tuan et al. (2020) has analyzed the COVID-19 
transmission model using Caputo Fractional-order. The authors use Adams Bashforth Moulton 
method to solve the model equations. The result from this study shows that the pandemic will 
continue over the next three years based on the oR  and the equilibrium point calculated. However, 

the authors predicted that more simulations could be presented since the COVID-19 cannot be 
controlled and the disease’s information is always changing. Similar approach has been done by 
Akindeinde et al. (2022) with Ulam-Hyers criteria to analyze the stability. 

In summary, this study uses the SIR model as a mathematical model to solve actual data 
cases in Malaysia using fractional-order derivatives. The fractional derivatives used are in Caputo 
sense. The Adams Bashforth Moulton approach is then applied to solve differential equations. This 
study aims to solve the SIR model using the Adams Bashforth Moulton method, determine the 
most identical fractional derivative value of SIR model for COVID-19, and analyse the stability of 
COVID-19 disease in Malaysia. 

 

2. SIR Model Formulation 

The SIR models the theoretical number of people infected with an infectious disease over time in a 
closed population. The name of this group of models comes from the fact that they involve 
coupled equations connecting the number of susceptible individuals  X , infected people  Y , and 

recovered people  Z . Individuals move from susceptible compartment to infectious compartment 

at the rate of    (infectivity rate) and from infectious compartment to recovered compartment at 

the rate of    (recovery rate) as shown in Figure 1. 

 
Figure 1. SIR compartment diagram. 

 

Mohd Idris (2022) describes the dynamics of COVID-19 transmission through the following 
equations: 

0 o

dX YX
r N X Z

dt N

       (1) 

 1o

dY YX
Y Y

dt N

        (2) 

o

dZ
Y Z Z

dt
      (3) 

N X Y Z    (4) 
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where X is the number of susceptible, Y is the number of infectious individuals (symptomatic 
group), Z the number of fully recovered individuals, N is the total number of people in the area, 

0r the natural birth rate,   is the infectious rate, 0  is the natural death rate, 1 is the rate of death 
caused by the disease,   is the rate at which recovery people become susceptible due to low 
immunity or health related issues, and  is the recovery rate. 

 

The SIR model can be dimensionalised by using dimensionless variables, which are 

* *, ,
X Y

X Y
N N

  and * Z
Z

N
  

 

Hence, the dimensionless model of the COVID-19 transmission is then given as 
*

* * * *
0 0

dX
r Y X X Z

dt
       (5) 

 
*

* * * *
0 1

dY
Y X Y Y

dt
        (6) 

*
* * *

0

dZ
Y Z Z

dt
      (7) 

where *X , *Y , and *Z  are dimensionless variable for the number of susceptible, the number of 
infectious individuals and the number of fully recovered individuals, respectively. 

 

2.1 Application of Fractional Caputo Method 

 

Diethelm et al. (2002) discovered a fractional differential equation of the following form in their 
research: 

    
     

*

0

( , , 0

0 , 0,1,..., 1k k

D y t f t y t t T

y y k m

   


  
 (8) 

where  is the fractional order , 0  ,T  is a suitable positive number and  m   is the first 

integer not less than  .  D y t
  is the  th-order (always fractional) derivative of y . 

Consider y    be a function with ( 1)m   absolutely continuous integer-order derivatives, then the 

fractional Caputo derivative of order   is defined as: 

           1

0

1
, 1 ,

t m mD y t t y d m m Z
m

   


  
       

     (9) 

where ( )my  denotes the derivatives of integer thm  order of y  and in the above integral   

represents the Gamma function. 

Therefore, by using Equation (8) to Equation (5)-(7) the new system of fractional 
differential equations (FDEs) for the model can be written: 

 

 * * * * *
0 0tD X t r Y X X Z        (10) 

   * * * * *
0 1tD Y t Y X Y Y         (11) 

 * * * *
0tD Z t Y Z Z       (12) 
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2.2 Solution of Fractional Caputo using Adams Bashforth-Moulton 

The Equation (8) is equivalent to Volterra integral equation (Brunner, 2017): 

   

      
1 1

0 0
0

1
, ,

!

km tk

k

t
y t y t u f u y u du t T

k





 



   
   (13) 

 

For solving the Equation (8) and Equation (13), the fractional Adams method on a uniform grid 

 : 0,1,...,jt jh j N   with some integer N , step length h T N , and let  j jy y t was done by 

Diethelm, et. al (2004). Thus, 

   

     

1
1

1 0 , 1
0 0

1
1

1 0 , 1 1, 1 1 1
0 0

1
, ,

!

1
, , ,

!

jm k
p jk
k j k j j

j j

jm k
j pk

k j k j j k k k k
j j

t
y y b f t y

j

t
y y a f t y a f t y

j








 
 




     
 

 


 
     

 

 
 (14) 

where 

 

 

  
     

1

1 1 1

, 1

1 , if 0

, 2 2 1 , if 1
1

1, if 1
j k

k k k j
h

a k j k j k j j k

j k




  



 



  


                

 

and 

    , 1 2 , 0,1,..., .j k

h
b k j k j j k


 

        

 

The initial values are given as  

      *
0, , 0 , 0 1, 0D X t f t X t X X t       (15) 

      *
0, , 0D Y t f t Y t Y Y    (16) 

      *
0, , 0D Z t f t Z t Z Z    (17) 

 

Using Equation (14), the system in the form of Adams-Bashforth-Moulton method is reduced to 

   * * * * *
1 0 , 1 0 0

0

1
,

n
p

n j n j j j j
j

X X b r Y X X Z  
 



    
   (18) 

    * * * * *
1 0 , 1 0 1

0

1
,

n
p

n j n j j j j
j

Y Y b Y X Y Y   
 



    
   (19) 

   * * * *
1 0 , 1 0

0

1
,

n
p

n j n j j j
j

Z Z b Y Z Z  
 



   
   (20) 

 

 

 

where 

    , 1 1 , 0j n

h
b n j n j j n


 

         
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and 

       * * * * *
1 0 0 1 1 0 1 1 , 1 0 0

0

,
2 2

n
p p p p

n n n n n j n j j j j
j

h h
X X r Y X X Z a r Y X X Z

 

     
      



        
      (21) 

         * * * * *
1 0 1 1 0 1 1 1 , 1 0 1

0

,
2 2

n
p p p p

n n n n n j n j j j j
j

h h
Y Y Y X Y Y a Y X Y Y

 

       
      



        
    

 

(22) 

       * * * *
1 0 1 0 1 1 , 1 0

0

,
2 2

n
p p p

n n n n j n j j j
j

h h
Z Z Z Z Z a Y Z Y

 

     
     



      
      (23) 

where 

  
     

1
0

1 1 1

, 1

1 , if 0

2 2 1 , if 1

1, if 1
j n

n n r n j

a n j n j n j j n

j n



  



  


             
  

 

 

3. Stability Analysis 

The Jacobian Matrix is used to find the equilibria. Two types of equilibria obtained in this study 
are disease-free equilibrium and endemic equilibrium. Based on the type of equilibria obtained, we 
will analyse the stability. 

Covid-19 cases in Malaysia from 1 March 2020 to 31 December 2020 are being considered. These 
data are categorised into three different phases. The duration of phase 1 is 160 days, starting from 
1 March 2020 to 7 August 2020. Phase 2 is conducted for 124 days from 1 March 2020 to 2 July 
2020. Lastly, phase 3 is 103 days from 20 September 2020 to 31 December 2020 (Mohd Idris, 
2022). 

 

Then, the Jacobian matrix is defined from Equation (1) – (3) as 

 

* *
0

* *
0 1

0

0

0

Y X

J Y X

   
    

  

   
     
   

 (24) 

 

3.1 Disease Free Equilibrium 

At equilibrium point  0 1,0,0E  , the Jacobian matrix becomes 

 
0

0 1

0

0 0

0

J

  
   

  

  
     
   

 (25) 

 

Hence, the eigenvalues for disease free equilibrium are 

1 0     

2 0 1          

3 0       
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3.2 Endemic Equilibrium 

At the endemic equilibrium point  *
0 0 0, ,E X Y Z , the Jacobian matrix is defined as 

 
0 0 0

0 0 0 1

0

0

0

Y X

J Y X

   
    

  

   
      
   

 (26) 

 

Hence, the eigenvalues for endemic equilibrium are 

1 0 0Y       

 2 0 0 1X          

3 0       

 

The conclusion made in the stability analysis were based on Woolf et al. (2021). A complete 
overview of the stability corresponding to each type of eigenvalue is in the Table 1 (Woolf et. al, 
2021): 

 
Table 1. Overview of the stability corresponding to each type of eigenvalue. 

Type of eigenvalue Stability Oscillatory Behaviour Notation 

All real and positive Unstable None Unstable Node 

All real and negative Stable None Stable Node 

Mixed positive and 
negative real 

Unstable None Unstable saddle point 

a bi  Unstable Undamped Unstable spiral 

a bi   Stable Damped Stable spiral 

0 bi  Unstable Undamped Circle 

Repeated values Depends on orthogonality of eigenvectors 

 

4. Result and Discussion 

This section analyses the behaviour of the SIR parameter of COVID-19 actual data using fractional 
order greater than 0.5. Covid-19 cases in Malaysia from 1 March 2020 to 31 December 2020 are 
being considered. These data are categorised into three different phases. The duration of phase 1 is 
160 days, starting from 1 March 2020 to 7 August 2020. Phase 2 (wave 1) is conducted for 124 
days from 1 March 2020 to 2 July 2020. Lastly, phase 3 (wave 2) is 103 days from 20 September 
2020 to 31 December 2020 (Mohd Idris, 2022). 

4.1 Validation of the Study 

The Runge-Kutta build-in method in Matlab software is used to validate the results of simulations 
solved with the Adams Bashforth Moulton method as in Table 2. The results are in good 
agreement. Hence, the programming used in this study is valid and reliable. 
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Table 2. Numerical table of solving SIR model with  1  . 

Time 
(days) 

Population 

 Adams Bashforth Moulton Runge-Kutta 

 Susceptible 
( )X * t  

Infectious 
( )Y * t  

Recovered 
( )Z * t  

Susceptible 
( )X * t  

Infectious 
( )Y * t  

Recovered 
( )Z * t  

0 1.000 0.0010 0.0000 1.000 0.0010 0.0000 

5 0.9985 0.0019 0.0006 0.9985 0.0019 0.0006 

10 0.9956 0.0036 0.0018 0.9955 0.0037 0.0018 

15 0.9900 0.0069 0.0041 0.9899 0.0070 0.0041 

20 0.9796 0.0130 0.0084 0.9794 0.0131 0.0085 

25 0.9605 0.0240 0.0165 0.9600 0.0243 0.0167 

30 0.9265 0.0433 0.0312 0.9256 0.0438 0.0316 

35 0.8696 0.0742 0.0571 0.8681 0.0750 0.0578 

40 0.7832 0.1178 0.1000 0.7811 0.1188 0.1010 

45 0.6694 0.1674 0.1642 0.6670 0.1684 0.1657 

50 0.5433 0.2081 0.2495 0.5412 0.2086 0.2512 

55 0.4266 0.2258 0.3485 0.4251 0.2260 0.3500 

60 0.3333 0.2180 0.4497 0.3323 0.2180 0.4506 

65 0.2655 0.1924 0.5430 0.2648 0.1926 0.5435 

70 0.2186 0.1595 0.6229 0.2181 0.1599 0.6230 

 

4.2 Analysis of the Results 

This study shows the SIR model of phase 1 for 160 days with the values of 
0.079946685  , 0.046113781  , 0 0  , 1 0.013907432   and 0    with initial 

 * 0 1X  ,  * 0 0.2Y   and  * 0 0Z  . 

 
(a) 

 
(b) 

 
(c) 

Figure 2. SIR model for Phase 1 COVID-19 with fractional order, (a) 1  ,(b) 0.8  and (c) 0.6   
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In Figure 2(a), it is evident that the number of susceptible individuals decreases 
significantly over a span of 160 days. The infected population,  X t rises initially but drops after 

16 days. Both susceptible,  Y t  and recovered populations,  Z t  exhibit asymptotic behaviour 

after 156 and 158 days, respectively. Moving on to Figure 2(b), susceptible individuals decrease 
significantly and reach asymptotic behaviour after 142 days. Conversely, the recovered population 
increases steadily and approaches asymptotic behaviour after 130 days. Meanwhile, the infected 
group increases but starts decreasing after 12 days. Figure 2(c) reveals that susceptible individuals 
fall and reach asymptotic behaviour after 128 days, while the recovered population increases and 
begins to approach asymptotic behaviour after 120 days. Similarly, the infected population initially 
rises but then starts to decrease after ten days. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Numerical solution for Phase 1(a) Susceptible,  *X t , (b) Infected,  *Y t  and (c) Recovered, 

 *Z t  in a time, t  (days) with fractional order, 1,0.8,0.6   respectively. 

In Figure 3(a), we observe that the time it takes for the susceptible population to reach 
asymptotic behaviour decreases as the fractional order decreases. Specifically, it takes 156 days for 
susceptible to reach this state when the fractional order is at its highest, 142 days when it decreases 
slightly, and 127 days when it decreases further. During this time, the susceptible population 
decreases and approaches 30 percent of the total population. Moving on to Figure 3(b), we see that 
as the fractional order decreases, the infected population rises. Consequently, it significantly 
decreases and approaches zero, especially for lower fractional orders. The peak number of infected 
cases varies across the three fractional orders, with the peak occurring at 9 days for the highest 
fractional order, 11 days for the intermediate fractional order, and 16 days for the lowest fractional 
order. Finally, in Figure 3(c), as the fractional order decreases from its initial value to a lower 
value, the recovered population increases and approaches 70 percent of the total population. In 
summary, the figures illustrate how changes in the fractional order impact the dynamics of 
susceptible, infected, and recovered populations, affecting the time it takes for them to reach 
asymptotic behaviour and the peak of infected cases. 
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Phase 2 shows the SIR model for 124 days with the values of 0.05158641  , 

0.027088421  , 0 0  , 1 0.014122316   and 0   with initial  * 0 1X  ,  * 0 0.2Y    and 

 0 0Z  . 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. SIR model for Phase 2 COVID-19 with fractional order, (a) 1  , (b) 0.8  and (c)  
0.6  . 

 

In Figure 4(a), we observed a significant increase in the number of infected and recovered 
individuals, while the susceptible population decreases notably. Additionally, infected individuals 
start declining after 21 days of disease presence. Meanwhile, Figure 4(b) shows a continuous 
increase in the number of infected and recovered individuals, with Infected cases reaching an 
asymptotic level after day 124. On the other hand, the susceptible population experiences a 
dramatic reduction and only minimally decreases as the interval reaches 110 days. Figure 4(c) 
illustrates a significant decrease in the susceptible population, while the number of infected and 
recovered individuals continues to increase. However, after 122 days, infected cases begin to fall 
and eventually reach an asymptotic state. Comparing these findings to real COVID-19 data in the 
Figure 4, we can see that the results closely mirror the actual situation. The rapid increase in 
infected cases, starting on day 15, was primarily due to imported cases and a religious mass 
gathering involving thousands of people from over 15 countries. Malaysia implemented the 
Movement Control Order (MCO) on day 18 to curb the spread, leading to a notable improvement 
in the recovery rate until day 40. Subsequently, as the number of infected cases continued to rise, 
Malaysia enforced multiple MCOs. However, starting on April 19, 2020, at day 50 of the disease's 
presence, the number of infected cases began to decrease, eventually reaching single digits on day 
115, with only 3 new cases reported on day 124. This trend closely resembles the real data, 
demonstrating that the simulation's behaviour aligns with the actual situation, particularly with 
infected cases reaching an asymptotic state after day 124. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Numerical solution for Phase 2 (a) Susceptible,  *X t , (b) Infected,  *Y t  and (c) 

Recovered,  *Z t  in a time, t  (days) with fractional order 1,0.8,0.6   respectively. 

In Figure 5(a), the graph depicting susceptible individuals over time reveals a significant 
decline within a short time frame. After 120 days of the disease's presence, the number of 
susceptible individuals stabilizes, exhibiting asymptotic behaviour. For a fractional order value of 
0.6, the graph indicates that the susceptible population remains below 40 percent after 100 days of 
the disease's presence. Moving on to Figure 5(b), it displays a slight initial increase followed by a 
significant decrease in the number of infected individuals after 30 days, regardless of the fractional 
order value. Notably, the proportion of infected individuals approaches zero around day 122 of the 
disease's presence. Finally, Figure 5(c) illustrates a rapid increase in the number of recovered 
individuals within a short timeframe. The graph also shows that the percentage of recovered 
individuals is notably higher at day 120. In summary, these figures depict the dynamics of 
susceptible, infected, and recovered populations over time under different fractional order values. 
Susceptible individuals decline rapidly and stabilize, infected cases rise briefly before decreasing 
significantly, and the number of recovered individuals increases rapidly. 

Phase 3 demonstrates the SIR model for 103 days with the values of 0.262362091  , 

0.10316611  , 0 0  , 1 0.003315734    and 0   with initial  * 0 1X  ,  * 0 0.9Y  ,  and 

 * 0 0.01Z  . 
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(a) 

 
(b) 

 
(c) 

Figure 6. SIR model for Phase 3 COVID-19 with fractional order, (a) 1  , (b) 0.8  and (c)  
0.6  . 

In Figure 6(a), we observe a significant decrease in the number of susceptible individuals 
over time, accompanied by a substantial growth in the recovered population. As for the infected 
population, it undergoes a dramatic increase after day 20 but then experiences a significant decline 
after day 20, ultimately reaching an asymptotic state after 85 days. Moving on to Figure 6(b), it 
shows that the susceptible population decreases rapidly until day 20 and slightly thereafter. Both 
the recovered and infected populations increase rapidly. However, the susceptible population 
decreases significantly after ten days of disease absence and reaches an asymptotic state by day 60. 
In Figure 6(c), the susceptible population undergoes a dramatic decline, particularly in the early 
period, with a slight decrease after day 20. The graph reveals significant increases in the recovered 
and infected populations, but then the infected population drops significantly after ten days. These 
graphs illustrate that the transition to a fractional model is highly sensitive to the order of 
differentiation. In real-life scenarios, during Phase 3, the number of infected cases increases 
rapidly, starting from 57 cases on day one and reaching 111 cases on day six. The rapid increase 
continues, reaching four digits on day 35 due to the Sabah state election on September 26, 2020, 
leading to new clusters throughout Malaysia. However, infected cases begin to decline after day 61 
and reach an asymptotic state by day 63. Recovered cases show consistent growth, with a 
significant increase on day 42, reaching 1000 cases. Recovery cases continue to increase until day 
103. The infected cases exhibit asymptotic behaviour due to a higher recovery rate compared to 
Phase 2. Therefore, when compared to real infected case data in the Figure 3, the simulation 
closely resembles the actual situation, particularly in achieving asymptotic behaviour. 
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(a) (b) 

 
 (c) 

Figure 7. Numerical solution for Phase 3 (a) Susceptible,  *X t , (b) Infected,  *Y t  and (c) 

Recovered,  *Z t  in a time, t  (days) with fractional order 1,0.8,0.6   respectively. 

In these figures, we see that as time passes, the number of people susceptible to the disease 
drops quickly, with about ten percent remaining susceptible after day 50, regardless of the chosen 
fractional order values. This consistent decrease in susceptibility suggests that the disease's impact 
lessens over time due to the model's parameters. In Figure 7(b), we witness a significant initial 
surge in the number of infected individuals, followed by a decline whose extent depends on the 
chosen fractional order values. This indicates that the choice of fractional order values influences 
how the infected population evolves, and with a fractional order value of 1, the infected population 
stabilizes after day 70. Figure 7(c) shows a rapid increase in the number of recovered individuals, 
slowing down after day 40. Importantly, in all three fractional order scenarios, almost the entire 
population has recovered by day 70. This implies that the choice of fractional order values may 
affect the speed of recovery, but significant recovery is eventually achieved for the entire 
population. In conclusion, these figures provide valuable insights into the dynamics of susceptible, 
infected, and recovered populations over time, emphasizing the importance of fractional order 
values. These findings help us better understand infectious diseases and how mathematical models 
can predict their behavior. 

 

4.3 Stability Analysis 

4.3.1 Disease Free Equilibrium 

 

After substituting the data from Mohd Idris (2022), 0.079946685  , 1 0.013907432  , 
0.046113781  , 0 0  , and 0  , the eigenvalues at disease-free equilibrium points are 
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1 0  , 2 0.019925472  , and 3 0  . Since the eigenvalues are real numbers with positive signs, 

the disease-free equilibrium point is unstable. 

4.3.2 Endemic Equilibrium 

After substituting all the values, the result for phases 1, 2 and 3 are as follow: 

 
Table 3. The Result of Stability for Actual Data. 

PHASE 1: 

Endemic Point (1,0.2,0) 

0 1.733683152R   

PHASE 2: 

Endemic Point (1,0.2,0) 

0 1.904371247R   

PHASE 3: 

Endemic Point 
(1,0.09,0.01) 

0 2.54310344R   

1 0   

2 0.001968068 0.030916438i    

3 0.001968068 0.030916438i    

1 0   

2 0.001968068 0.020619940i    

3 0.001968068 0.020619940i    

1 0   

2 0.0230134 

3 0.109254259   

0   
0.079946685   

0.046113781   

0   
0.05158641   

0.027088421   

0   
0.26236209   

0.10316611   

Stability:  

unstable (unstable spiral) 

Stability: 

unstable (unstable spiral) 

Stability: 

unstable 

 

Table 3 offers a detailed glimpse into the stability analysis of different phases within a 
mathematical model describing the dynamics of the COVID-19 pandemic. In Phase 1, 
characterized by an endemic point at (1, 0.2, 0) and a basic reproduction number, R0 of 
1.733683152, the stability assessment reveals eigenvalues with non-zero imaginary parts, 
indicating a potential for oscillatory behavior. The term "unstable or unstable spiral" underscores 
the susceptibility of this equilibrium state to perturbations, suggesting a complex, potentially 
spiralling, trajectory. 

Moving to Phase 2, where the endemic point and R0 remain the same, the eigenvalues 
exhibit a similar pattern with non-zero imaginary parts. Once again, the system is identified as 
unstable or an unstable spiral, reinforcing the notion of dynamic and potentially oscillatory 
dynamics. In Phase 3, marked by a distinct endemic point at (1, 0.09, 0.01) and a higher R0 of 
2.54310344, the stability analysis reveals eigenvalues with a different nature. While one 
eigenvalue remains zero, the other two have non-zero real parts, indicating a level of instability. In 
this case, the term "unstable" is used to characterize the equilibrium state. 

The interpretation of these results involves understanding the implications of stability or 
instability in the context of disease spread. Endemic points represent potential equilibrium states 
within the population, and the associated R0 values signify the disease's transmission potential. The 
presence of non-zero imaginary parts in the eigenvalues suggests the possibility of oscillatory 
behavior, contributing to the overall complexity of the disease dynamics. 

In summary, these stability analyses contribute valuable insights into the potential 
trajectories of COVID-19 spread in different scenarios. The identification of unstable or spiralling 
behavior underscores the need for careful consideration of dynamic factors when modeling and 
predicting the evolution of the pandemic. Further exploration of the specific mathematical model 
and parameter interactions would likely enhance our understanding of the intricacies of COVID-19 
dynamics in each phase. 
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5. Conclusion 

In summary, this mathematical study employing the SIR model has achieved its objectives and 
revealed significant findings. Firstly, the Adams Bashforth Moulton method proved effective in 
solving the fractional SIR model, a crucial tool for comprehending infectious diseases. Secondly, 
various fractional order values were investigated to establish the most precise representation of the 
SIR model for COVID-19 in Malaysia. Fractional order values exceeding 0.5 were chosen for 
analysis, resulting in key observations for each phase: Phase 1 exhibited a close match to real data, 
with the susceptible and infected populations reaching asymptotic behaviour after day 133; Phase 
2 showed strong alignment with real data, achieving asymptotic behaviour after day 124; Phase 3 
closely resembled the real situation, with asymptotic behaviour for susceptible and infected 
populations attained after day 85. Notably, reducing the fractional order derivative values 
expedited convergence to asymptotic behaviour for all populations. Thirdly, the study evaluated 
the stability of COVID-19 in Malaysia, identifying two equilibrium points: the disease-free 
equilibrium and the endemic equilibrium. The findings suggest that the endemic equilibrium points 
in all three phases are unstable. Overall, this research underscores the effectiveness of 
mathematical modelling in comprehending infectious diseases, particularly in the context of 
COVID-19 in Malaysia. The fractional SIR model, in conjunction with careful selection of 
fractional order values, has facilitated an accurate representation of disease dynamics, contributing 
valuable insights into the pandemic's behaviour and stability across different phases. 
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